Display options
Share it on

J Cell Physiol. 2021 Nov;236(11):7745-7758. doi: 10.1002/jcp.30457. Epub 2021 Jun 01.

Multiple roles for peptidylglycine α-amidating monooxygenase in the response to hypoxia.

Journal of cellular physiology

Vishwanatha K S Rao, Betty A Eipper, Richard E Mains

Affiliations

  1. Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.
  2. Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.

PMID: 34061983 DOI: 10.1002/jcp.30457

Abstract

The biosynthesis of many of the peptides involved in homeostatic control requires peptidylglycine α-amidating monooxygenase (PAM), an ancient, highly conserved copper- and ascorbate-dependent enzyme. Using the production of amidated chromogranin A to monitor PAM function in tumor cells, physiologically relevant levels of hypoxia were shown to inhibit this monooxygenase. The ability of primary pituitary cells exposed to hypoxic conditions for 4 h to produce amidated chromogranin A was similarly inhibited. The affinity of the purified monooxygenase for oxygen (K

© 2021 Wiley Periodicals LLC.

Keywords: HIF1a; RNAseq; atrium; basal secretion; chromogranin A; corticotrope; pituitary

References

  1. Alam, M. R., Steveson, T. C., Johnson, R. C., Back, N., Abraham, B., Mains, R. E., & Eipper, B. A. (2001). Signaling mediated by the cytosolic domain of peptidylglycine alpha-amidating monooxygenase. Molecular Biology of the Cell, 12, 629-644. - PubMed
  2. Ameri, K., Hammond, E. M., Culmsee, C., Raida, M., Katschinski, D. M., Wenger, R. H., Wagner, E., Davis, R. J., Hai, T., Denko, N., & Harris, A. L. (2007). Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signalling pathway. Oncogene, 26(2), 284-289. https://doi.org/10.1038/sj.onc.1209781 - PubMed
  3. Attenborough, R. M., Hayward, D. C., Kitahara, M. V., Miller, D. J., & Ball, E. E. (2012). A "neural" enzyme in nonbilaterian animals and algae: Preneural origins for peptidylglycine α-amidating monooxygenase. Molecular Biology and Evolution, 29, 3095-3109. - PubMed
  4. Bonnemaison, M. L., Bäck, N., Lin, Y., Bonifacino, J.S., Mains, R. E., & Eipper, B. A. (2014). AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins. Traffic, 15, 1099-1121. - PubMed
  5. Bono, H., & Hirota, K. (2020). Meta-analysis of hypoxic transcriptomes from public databases. Biomedicines, 8, 10. https://doi.org/10.3390/biomedicines8010010 - PubMed
  6. Bäck, N., Luxmi, R., Powers, K. G., Mains, R. E., & Eipper, B. A. (2020). Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation. Proceedings of the National Academy of Sciences of the United States of America, 117, 17820-17831. - PubMed
  7. Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C., & Kieda, C. (2011). Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. Journal of Cellular and Molecular Medicine, 15(6), 1239-1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x - PubMed
  8. Chaturvedi, P., Gilkes, D. M., Wong, C. C., Kshitiz, W., Luo, W., Zhang, H., Wei, H., Takano, N., Schito, L., Levchenko, A., & Semenza, G. L. (2013). Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. Journal of Clinical Investigation, 123(1), 189-205. https://doi.org/10.1172/jci64993 - PubMed
  9. Ciccotosto, G. D., Schiller, M. R., Eipper, B. A., & Mains, R. E. (1999). Induction of integral membrane PAM expression in AtT-20 cells alters the storage and trafficking of POMC and PC1. Journal of Cell Biology, 144, 459-471. - PubMed
  10. Conzelmann, M., Offenburger, S. L., Asadulina, A., Keller, T., Munch, T. A., & Jekely, G. (2011). Neuropeptides regulate swimming depth of Platynereis larvae. Proceedings of the National Academy of Sciences of the United States of America, 108, E1174-E1183. - PubMed
  11. D'Amico, M. A., Ghinassi, B., Izzicupo, P., Manzoli, L., & Di Baldassarre, A. (2014). Biological function and clinical relevance of chromogranin A and derived peptides. Endocrine Connections, 3(2), R45-R54. https://doi.org/10.1530/ec-14-0027 - PubMed
  12. Day, R., Schafer, M. K. H., Watson, S. J., Chretien, M., & Seidah, N. G. (1992). Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Molecular Endocrinology, 6, 485-497. - PubMed
  13. Dengler, V. L., Galbraith, M., & Espinosa, J. M. (2014). Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 1-15. https://doi.org/10.3109/10409238.2013.838205 - PubMed
  14. Eipper, B. A., & Mains, R. E. (1980). Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocrine Reviews, 1, 1-27. - PubMed
  15. Eipper, B. A., Mains, R. E., & Glembotski, C. C. (1983). Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proceedings of the National Academy of Sciences of the United States of America, 80, 5144-5148. - PubMed
  16. Eipper, B. A., Park, L., Keutmann, H. T., & Mains, R. E. (1986). Amidation of joining peptide, a major pro-ACTH/endorphin-derived product peptide. Journal of Biological Chemistry, 261, 8686-8694. - PubMed
  17. Eipper, B. A., Quon, A. S. W., Mains, R. E., Boswell, J. S., & Blackburn, N. J. (1995). The catalytic core of peptidylglycine alpha-hydroxylating monooxygenase: Investigation by site-directed mutagenesis, Cu X-ray absorption spectroscopy, and electron paramagnetic resonance. Biochemistry, 34, 2857-2865. - PubMed
  18. El Meskini, R., Mains, R. E., & Eipper, B. A. (2000). Cell type-specific metabolism of peptidylglycine alpha-amidating monooxygenase in anterior pituitary. Endocrinology, 141(8), 3020-3034. - PubMed
  19. Elvidge, G. P., Glenny, L., Appelhoff, R. J., Ratcliffe, P. J., Ragoussis, J., & Gleadle, J. M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1alpha, HIF-2alpha, and other pathways. Journal of Biological Chemistry, 281(22), 15215-15226. https://doi.org/10.1074/jbc.M511408200 - PubMed
  20. Evans, J. P., Blackburn, N. J., & Klinman, J. P. (2006). The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase: A kinetic study of the H172A mutant. Biochemistry, 45(51), 15419-15429. https://doi.org/10.1021/bi061734c - PubMed
  21. Francisco, W. A., Merkler, D. J., Blackburn, N. J., & Klinman, J. P. (1998). Kinetic mechanism and intrinsic isotope effects for the peptidylglycine α-amidating enzyme reaction. Biochemistry, 37, 8244-8252. - PubMed
  22. Goldstein, M., Joh, T. H., & Garvey, T. Q., 3rd. (1968). Kinetic studies of the enzymatic dopamine beta-hydroxylation reaction. Biochemistry, 7(8), 2724-2730. https://doi.org/10.1021/bi00848a005 - PubMed
  23. Hess, C. R., McGuirl, M. M., & Klinman, J. P. (2008). Mechanism of the insect enzyme, tyramine β-monooxygenase, reveals differences from the mammalian enzyme, dopamine β-monooxygenase. Journal of Biological Chemistry, 283, 3042-3049. - PubMed
  24. Hirsilä, M., Koivunen, P., Günzler, V., Kivirikko, K. I., & Myllyharju, J. (2003). Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. Journal of Biological Chemistry, 278(33), 30772-30780. https://doi.org/10.1074/jbc.M304982200 - PubMed
  25. Hosaka, M., Watanabe, T., Sakai, Y., Uchiyama, Y., & Takeuchi, T. (2002). Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Molecular Biology of the Cell, 13(10), 3388-3399. https://doi.org/10.1091/mbc.02-03-0040 - PubMed
  26. Huang, K., Diener, D. R., & Rosenbaum, J. L. (2009). The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. Journal of Cell Biology, 186(4), 601-613. https://doi.org/10.1083/jcb.200903066 - PubMed
  27. Huang, Z., He, G., & Huang, Y. (2017). Deferoxamine synergizes with transforming growth factor-β signaling in chondrogenesis. Genetics and Molecular Biology, 40(3), 698-702. https://doi.org/10.1590/1678-4685-gmb-2016-0324 - PubMed
  28. Jiang, X. P., Wang, F., Yang, D. C., & Elliott, R. L. (2004). Induction of apoptosis by iron depletion in the human breast cancer MCF-7 cell line and the 13762NF rat mammary adenocarcinoma in vivo. Anticancer Research, 22, 2685-2692. - PubMed
  29. Johnson, K. A., Paisley-Flango, K., Tangarone, B. S., Porter, T. J., & Rouse, J. C. (2007). Cation exchange-HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Analytical Biochemistry, 360, 75-83. - PubMed
  30. Kaelin, W. G., Jr., Ratcliffe, P. J., & Semenza, G. L. (2016). Pathways for oxygen regulation and homeostasis: The 2016 Albert Lasker Basic Medical Research Award. Journal of the American Medical Association, 316(12), 1252-1253. https://doi.org/10.1001/jama.2016.12386 - PubMed
  31. Kalfon, R., Koren, L., Aviram, S., Schwartz, O., Hai, T., & Aronheim, A. (2017). ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance. Cardiovascular Research, 113, 134-146. - PubMed
  32. Kindrick, J. D., & Mole, D. R. (2020). Hypoxic regulation of gene transcription and chromatin: Cause and effect. International Journal of Molecular Sciences, 21(21), 8320. https://doi.org/10.3390/ijms21218320 - PubMed
  33. Koivunen, P., & Myllyharju, J. (2018). Kinetic analysis of HIF prolyl hydroxylases. Methods in Molecular Biology, 1742, 15-25. https://doi.org/10.1007/978-1-4939-7665-2_2 - PubMed
  34. Kolhekar, A. S., Bell, J., Shiozaki, E. N., Jin, L., Keutmann, H. T., Hand, T. A., Mains, R. E., & Eipper, B. A. (2002). Essential features of the catalytic core of peptidyl-alpha-hydroxyglycine alpha-amidating lyase. Biochemistry, 41, 12384-12394. - PubMed
  35. Kolhekar, A. S., Keutmann, H. T., Mains, R. E., Quon, A. S. W., & Eipper, B. A. (1997). Peptidyl α-hydroxylating monooxygenase: Active site residues, disulfide linkages and a two-domain model of the catalytic core. Biochemistry, 36, 10901-10909. - PubMed
  36. Kolhekar, A. S., Mains, R. E., & Eipper, B. A. (1997). Peptidylglycine alpha-amidating monooxygenase (PAM): An ascorbate requiring enzyme. Methods in Enzymology, 279, 35-43. - PubMed
  37. Kolhekar, A. S., Quon, A. S., Berard, C. A., Mains, R. E., & Eipper, B. A. (1998). Post-translational N-glycosylation of a truncated form of a peptide processing enzyme. Journal of Biological Chemistry, 273(36), 23012-23018. - PubMed
  38. Kumar, D., Mains, R. E., & Eipper, B. A. (2016). 60 Years of POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C. Journal of Molecular Endocrinology, 56, T63-T76. - PubMed
  39. Kumar, D., Mains, R. E., Eipper, B. A., & King, S. M. (2019). Ciliary and cytoskeletal functions of an ancient monooxygenase essential for bioactive amidated peptide synthesis. Cellular and Molecular Life Sciences, 76, 2329-2348. - PubMed
  40. Kumar, D., Strenkert, D., Patel-King, R. S., Leonard, M. T., Merchant, S. S., Mains, R. E., King, S. M., & Eipper, B. A. (2017). A bioactive peptide amidating enzyme is required for ciliogenesis. eLife, 6, e25728. - PubMed
  41. Kumar, D., Thomason, R. T., Yankova, M., Gitlin, J. D., Mains, R. E., Eipper, B. A., & King, S. M. (2018). Microvillar and ciliary defects in zebrafish lacking an actin-binding bioactive peptide amidating enzyme. Scientific Reports, 4, 4547. - PubMed
  42. Li, F., Zhang, J., Liao, R., Duan, Y., Tao, L., Xu, Y., & Chen, A. (2020). Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression. Molecular Medicine Reports, 22(5), 3813-3821. https://doi.org/10.3892/mmr.2020.11454 - PubMed
  43. Li, M., Xu, P., Xu, Y., Teng, H., Tian, W., Du, Q., & Zhao, M. (2017). Dynamic expression changes in the transcriptome of the prefrontal cortex after repeated exposure to cocaine in mice. Frontiers in Pharmacology, 8, 142. - PubMed
  44. Lu, H., Yang, Y., Allister, E. M., Wijesekara, N., & Wheeler, M. B. (2008). The identification of potential factors associated with the development of type 2 diabetes: A quantitative proteomics approach. Molecular & Cellular Proteomics, 7, 1434-1451. - PubMed
  45. Luxmi, R., Kumar, D., Mains, R. E., King, S. M., & Eipper, B. A. (2019). Cilia-based peptidergic signaling. PLoS Biology, 17(12):e3000566. - PubMed
  46. Mahata, S. K., & Corti, A. (2019). Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Annals of the New York Academy of Sciences, 1455, 34-58. - PubMed
  47. Mains, R. E., Alam, M. R., Johnson, R. C., Darlington, D. N., Bäck, N., Hand, T. A., & Eipper, B. A. (1999). Kalirin, a multifunctional PAM COOH-terminal domain interactor protein, affects cytoskeletal organization and ACTH secretion from AtT-20 cells. Journal of Biocommunication, 274, 2929-2937. - PubMed
  48. Mains, R. E., Blaby-Haas, C., Rheaume, B. A., & Eipper, B. A. (2018). Changes in corticotrope gene expression upon increased expression of peptidylglycine alpha-amidating monooxygenase. Endocrinology, 159, 2621-2639. - PubMed
  49. Man, L., Park, L., Bodine, R., Ginsberg, M., Zaninovic, N., Man, O. A., Schattman, G., Rosenwaks, Z., & James, D. (2017). Engineered endothelium provides angiogenic and paracrine stimulus to grafted human ovarian tissue. Scientific Reports, 7(1), 8203. https://doi.org/10.1038/s41598-017-08491-z - PubMed
  50. May, V., & Eipper, B. A. (1986). Long term culture of primary rat pituitary adrenocorticotropin/endorphin-producing cells in serum-free medium. Endocrinology, 118, 1284-1295. - PubMed
  51. Milgram, S. L., Johnson, R. C., & Mains, R. E. (1992). Expression of individual forms of peptidylglycine α-amidating monooxygenase in AtT-20 cells: Endoproteolytic processing and routing to secretory granules. Journal of Cell Biology, 117, 717-728. - PubMed
  52. Milgram, S. L., Mains, R. E., & Eipper, B. A. (1993). COOH-terminal signals mediate the trafficking of a peptide processing enzyme in endocrine cells. Journal of Cell Biology, 121, 23-36. - PubMed
  53. Milgram, S. L., Mains, R. E., & Eipper, B. A. (1996). Identification of routing determinants in the cytosolic domain of a secretory granule-associated integral membrane protein. Journal of Biological Chemistry, 271, 17526-17535. - PubMed
  54. Moser, S. C., Bensaddek, D., Ortmann, B., Maure, J. F., Swedlow, J. R., & Rocha, S. (2013). PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Developmental Cell, 26, 381-392. - PubMed
  55. Ortega-Sáenz, P., & López-Barneo, J. (2020). Physiology of the carotid body: From molecules to disease. Annual Review of Physiology, 82, 127-149. https://doi.org/10.1146/annurev-physiol-020518-114427 - PubMed
  56. Oses, C., Olivares, B., Ezquer, M., Acosta, C., Bosch, P., Donoso, M., Léniz, P., & Ezquer, F. (2017). Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One, 12(5):e0178011. https://doi.org/10.1371/journal.pone.0178011 - PubMed
  57. Powers, K. G., Ma, X. M., Eipper, B. A., & Mains, R. E. (2019). Identifying roles for peptidergic signaling in mice. Proceedings of the National Academy of Sciences of the United States of America, 116, 20169-20179. - PubMed
  58. Prigge, S. T., Mains, R. E., Eipper, B. A., & Amzel, L. M. (2000). New insights into copper monooxygenases and peptide amidation: Structure, mechanism and function. Cellular and Molecular Life Science, 57, 1236-1259. - PubMed
  59. Proulx-Bonneau, S., & Annabi, B. (2011). The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: A role for the secreted frizzled-related proteins. Biomarker Insights, 6, 107-118. - PubMed
  60. Rajagopal, C., Stone, K. L., Francone, V. P., Mains, R. E., & Eipper, B. A. (2009). Secretory granule to the nucleus: Role of a multiply phosphorylated intrinsically unstructured domain. Journal of Biological Chemistry, 284, 25723-25734. - PubMed
  61. Ramos-Molina, B., Martin, M. G., & Lindberg, I. (2016). PCSK1 variants and human obesity. Progress in Molecular Biology and Translational Science, 140, 47-74. - PubMed
  62. Rao, V. K., Zavala, G., Deb Roy, A., Mains, R. E., & Eipper, B. A. (2019). A pH-sensitive luminal His-cluster promotes interaction of PAM with V-ATPase along the secretory and endocytic pathways of peptidergic cells. Journal of Cellular Physiology, 234, 8683-8697. - PubMed
  63. Russo-Savage, L., Rao, V. K. S., Eipper, B. A., & Mains, R. E. (2020). Role of Kalirin and mouse strain in retention of spatial memory training in an Alzheimer's disease model mouse line. Neurobiology of Aging, 95, 69-80. https://doi.org/10.1016/j.neurobiolaging.2020.07.006 - PubMed
  64. Simpson, P. D., Eipper, B. A., Katz, M. J., Gandara, L., Wappner, P., Fischer, R., Hodson, E. J., Ratcliffe, P. J., & Masson, N. (2015). Striking oxygen sensitivity of the peptidylglycine alpha-amidating monooxygenase (PAM) in neuroendocrine cells. Journal of Biological Chemistry, 290, 24891-24901. - PubMed
  65. Skulj, M., Pezdirec, D., Gaser, D., Kreft, M., & Zorec, R. (2014). Reduction in C-terminal amidated species of recombinant monoclonal antibodies by genetic modification of CHO cells. BMC Biotechnology, 14, 76. - PubMed
  66. Stupnikov, M. R., & Cardoso, W. V. (2017). Sensing oxygen inside and out. eLife, 6, e27467. https://doi.org/10.7554/eLife.27467 - PubMed
  67. Surprenant, A. (1982). Correlation between electrical activity and ACTH/β-endorphin secretion in mouse pituitary tumor cells. Journal of Cell Biology, 95, 559-566. - PubMed
  68. Taabazuing, C. Y., Hangasky, J. A., & Knapp, M. J. (2014). Oxygen sensing strategies in mammals and bacteria. Journal of Inorganic Biochemistry, 133, 63-72. https://doi.org/10.1016/j.jinorgbio.2013.12.010 - PubMed
  69. Teppema, L. J., & Dahan, A. (2010). The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiological Reviews, 90(2), 675-754. https://doi.org/10.1152/physrev.00012.2009 - PubMed
  70. Tromans, D. (2000). Modeling oxygen solubility in water and electrolyte solutions. Industrial & Engineering Chemistry Research, 39, 805-812. - PubMed
  71. Tsubaki, M., Terashima, I., Kamata, K., & Koga, A. (2013). C-terminal modification of monoclonal antibody drugs: Amidated species as a general product-related substance. International Journal of Biological Macromolecules, 652, 139-147. - PubMed
  72. Vanderkooi, J. M., Erecińska, M., & Silver, I. A. (1991). Oxygen in mammalian tissue: methods of measurement and affinities of various reactions. American Journal of Physiology, 260(6 Pt 1), C1131-C1150. https://doi.org/10.1152/ajpcell.1991.260.6.C1131 - PubMed
  73. Verghese, E., Zhuang, J., Saiti, D., Ricardo, S. D., & Deane, J. A. (2011). In vitro investigation of renal epithelial injury suggests that primary cilium length is regulated by hypoxia-inducible mechanisms. Cell Biology International, 35, 909-913. - PubMed
  74. Watanabe, T., Uchiyama, Y., & Grube, D. (1991). Topology of chromogranin A and secretogranin II in the rat anterior pituitary: Potential marker proteins for distinct secretory pathways in gonadotrophs. Histochemistry, 96(4), 285-293. https://doi.org/10.1007/bf00271348 - PubMed
  75. Wenger, R. H., Kurtcuoglu, V., Scholz, C. C., Marti, H. H., & Hoogewijs, D. (2015). Frequently asked questions in hypoxia research. Hypoxia, 3, 35-43. https://doi.org/10.2147/hp.S92198 - PubMed
  76. Wenger, R. H., Stiehl, D. P., & Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Science's STKE, 2005(306), re12. https://doi.org/10.1126/stke.3062005re12 - PubMed
  77. Xiao, J., Zhang, Y., Zhang, W., Zhang, L., Li, L., Si, J., Li, X., & Ma, K. (2020). Protective effects of adiponectin against cobalt chloride-induced apoptosis of smooth muscle cells via cAMP/PKA pathway. BioMed Research International, 2020, 7169348. https://doi.org/10.1155/2020/7169348 - PubMed

Publication Types

Grant support