Display options
Share it on

RNA. 2021 May 25; doi: 10.1261/rna.078827.121. Epub 2021 May 25.

Fusion protein EWS-FLI1 is incorporated into a protein granule in cells.

RNA (New York, N.Y.)

Nasiha S Ahmed, Lucas M Harrell, Daniel R Wieland, Michelle A Lay, Valery F Thompson, Jacob C Schwartz

Affiliations

  1. Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85719.
  2. Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85719.
  3. Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85719 [email protected].

PMID: 34035145 PMCID: PMC8284321 DOI: 10.1261/rna.078827.121

Abstract

Ewing sarcoma is driven by fusion proteins containing a low complexity (LC) domain that is intrinsically disordered and a powerful transcriptional regulator. The most common fusion protein found in Ewing sarcoma, EWS-FLI1, takes its LC domain from the RNA-binding protein EWSR1 (Ewing Sarcoma RNA-binding protein 1) and a DNA-binding domain from the transcription factor FLI1 (Friend Leukemia Virus Integration 1). EWS-FLI1 can bind RNA polymerase II (RNA Pol II) and self-assemble through its low-complexity (LC) domain. The ability of RNA-binding proteins like EWSR1 to self-assemble or phase separate in cells has raised questions about the contribution of this process to EWS-FLI1 activity. We examined EWSR1 and EWS-FLI1 activity in Ewing sarcoma cells by siRNA-mediated knockdown and RNA-seq analysis. More transcripts were affected by the EWSR1 knockdown than expected and these included many EWS-FLI1 regulated genes. We reevaluated physical interactions between EWS-FLI1, EWSR1, and RNA Pol II, and employed a cross-linking based strategy to investigate protein assemblies associated with the proteins. The LC domain of EWS-FLI1 was required for the assemblies observed to form in cells. These results offer new insights into a protein assembly that may enable EWS-FLI1 to bind its wide network of protein partners and contribute to regulation of gene expression in Ewing sarcoma.

Published by Cold Spring Harbor Laboratory Press for the RNA Society.

Keywords: Ewing sarcoma; fusion proteins; granules; phase separation; transcription

References

  1. Genes Dev. 2012 Dec 15;26(24):2690-5 - PubMed
  2. Biostatistics. 2007 Jan;8(1):118-27 - PubMed
  3. J Mol Cell Biol. 2009 Dec;1(2):82-92 - PubMed
  4. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  5. Cell. 2017 Oct 19;171(3):615-627.e16 - PubMed
  6. Genes Dev. 2019 Dec 1;33(23-24):1619-1634 - PubMed
  7. Nat Cell Biol. 2020 Oct;22(10):1187-1196 - PubMed
  8. Nat Methods. 2015 Feb;12(2):115-21 - PubMed
  9. Genes Cancer. 2012 Feb;3(2):102-16 - PubMed
  10. Biochemistry. 2018 Dec 26;57(51):7021-7032 - PubMed
  11. Nature. 2020 May;581(7807):209-214 - PubMed
  12. J Proteome Res. 2020 Jan 3;19(1):360-370 - PubMed
  13. Nucleic Acids Res. 2019 Oct 10;47(18):9619-9636 - PubMed
  14. Cell Growth Differ. 1996 Apr;7(4):429-37 - PubMed
  15. Clin Cancer Res. 2016 Jul 15;22(14):3643-50 - PubMed
  16. Nature. 2019 Aug;572(7770):543-548 - PubMed
  17. Cell Rep. 2014 Nov 6;9(3):829-41 - PubMed
  18. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10149-54 - PubMed
  19. Cancer Cell. 2014 Nov 10;26(5):668-681 - PubMed
  20. Oncogene. 2003 Oct 9;22(44):6819-29 - PubMed
  21. Annu Rev Biochem. 2018 Jun 20;87:351-390 - PubMed
  22. Sci Rep. 2018 Jun 8;8(1):8755 - PubMed
  23. Genome Biol. 2014;15(12):550 - PubMed
  24. Elife. 2019 May 07;8: - PubMed
  25. Cell Rep. 2013 Nov 27;5(4):918-25 - PubMed
  26. Nature. 2018 Mar 15;555(7696):387-391 - PubMed
  27. Oncotarget. 2016 Apr 5;7(14):17616-30 - PubMed
  28. Genes Cancer. 2013 May;4(5-6):213-23 - PubMed
  29. Cell. 2017 Sep 21;171(1):163-178.e19 - PubMed
  30. Nature. 1992 Sep 10;359(6391):162-5 - PubMed
  31. Cancer Res. 2002 Aug 15;62(16):4583-7 - PubMed
  32. Cancer Res. 2014 Jan 1;74(1):224-34 - PubMed
  33. Nucleic Acids Res. 2017 Jul 27;45(13):7984-7996 - PubMed
  34. J Pathol. 2007 Sep;213(1):4-20 - PubMed
  35. Curr Opin Cell Biol. 2020 Jun;64:112-123 - PubMed
  36. J Vis Exp. 2020 Jun 27;(160): - PubMed
  37. Mol Cell. 2015 Oct 15;60(2):208-19 - PubMed
  38. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  39. Cell. 2015 Sep 24;163(1):123-33 - PubMed
  40. Genes Dev. 2015 May 15;29(10):1045-57 - PubMed
  41. Mol Cell. 2019 Dec 5;76(5):753-766.e6 - PubMed
  42. Cell. 2018 Apr 19;173(3):720-734.e15 - PubMed
  43. Nat Rev Dis Primers. 2018 Jul 5;4(1):5 - PubMed
  44. Cancer Res. 2009 May 15;69(10):4363-71 - PubMed
  45. Cell. 2009 Feb 20;136(4):688-700 - PubMed
  46. Cell. 2012 May 11;149(4):753-67 - PubMed
  47. Cell. 2013 Nov 21;155(5):1049-1060 - PubMed
  48. Science. 2018 Jul 27;361(6400): - PubMed
  49. Cell. 2018 Jul 26;174(3):688-699.e16 - PubMed
  50. Cancer Cell. 2006 May;9(5):405-16 - PubMed
  51. Bioinformatics. 2005 Aug 15;21(16):3448-9 - PubMed
  52. Annu Rev Biochem. 2015;84:355-79 - PubMed
  53. Nucleic Acids Res. 2013 Oct;41(19):8853-71 - PubMed
  54. Cancer Genet. 2011 Jul;204(7):351-65 - PubMed
  55. J Biol Chem. 2017 Nov 17;292(46):19110-19120 - PubMed
  56. Cancer Discov. 2014 Nov;4(11):1342-53 - PubMed
  57. Nature. 2020 Sep;585(7824):298-302 - PubMed
  58. J Clin Invest. 2007 May;117(5):1314-23 - PubMed
  59. Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9870-9875 - PubMed

Publication Types

Grant support