Display options
Share it on

Physiol Plant. 2021 Dec;173(4):1573-1586. doi: 10.1111/ppl.13507. Epub 2021 Jul 28.

Discovery of DNA polymorphisms via whole genome resequencing and their functional relevance in salinity stress response in chickpea.

Physiologia plantarum

Mohan Singh Rajkumar, Mukesh Jain, Rohini Garg

Affiliations

  1. School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
  2. Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India.

PMID: 34287918 DOI: 10.1111/ppl.13507

Abstract

Salinity stress is one of the major constraints for plant growth and yield. The salinity stress response of different genotypes of crop plants may largely be governed by DNA polymorphisms. To determine the molecular genetic factors involved in salinity stress tolerance in chickpea, we performed a whole genome resequencing data analysis of three each of salinity-sensitive and salinity-tolerant genotypes. A total of 6173 single nucleotide polymorphisms and 920 insertions and deletions differentiating the chickpea genotypes with contrasting salinity stress responses were identified. Gene ontology analysis revealed the enrichment of functional terms related to stress response and development among the genes harboring DNA polymorphisms in their promoter and/or coding regions. DNA polymorphisms located within the cis-regulatory motifs of the quantitative trait loci (QTL)-associated and abiotic stress related genes were identified, which may influence salinity stress response via modulating binding affinity of the transcription factors. Several genes including QTL-associated and abiotic stress response related genes harboring DNA polymorphisms exhibited differential expression in response to salinity stress especially at the reproductive stage of development in the salinity-tolerant genotype. Furthermore, effects of non-synonymous DNA polymorphisms on mutational sensitivity and structural integrity of the encoded proteins by the candidate QTL-associated and abiotic stress response related genes were revealed. The results suggest that DNA polymorphisms may determine salinity stress response via influencing differential gene expression in genotype and/or stage-dependent manner. Altogether, we provide a high-quality set of DNA polymorphisms and candidate genes that may govern salinity stress tolerance in chickpea.

© 2021 Scandinavian Plant Physiology Society.

References

  1. Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T. et al. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91-94. - PubMed
  2. Ait El Cadi, C., Krami, A.M., Charoute, H., Elkarhat, Z., Sifeddine, N., Lakhiari, H. et al. (2020) Prediction of the impact of deleterious nonsynonymous single nucleotide polymorphisms on the human RRM2B gene: a molecular modeling study. BioMed Research International, 2020, 7614634. - PubMed
  3. Alcázar, R., Bueno, M. & Tiburcio, A.F. (2020) Polyamines: small amines with large effects on plant abiotic stress tolerance. Cell, 9, 2373. - PubMed
  4. Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Dell'Aversana, E. & Carillo, P. (2019) Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Frontiers in Plant Science, 10, 230. - PubMed
  5. Bhattacharjee, A., Khurana, J.P. & Jain, M. (2016) Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response. Frontiers in Plant Science, 7, 627. - PubMed
  6. Camiolo, S., Sablok, G. & Porceddu, A. (2017) The evolutionary basis of translational accuracy in plants. Genome Biology and Evolution, 7, 2363-2373. - PubMed
  7. Chang, W.C., Lee, T.Y., Huang, H.D., Huang, H.Y. & Pan, R.L. (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics, 9, 1-14. - PubMed
  8. Chen, X., Chen, Z., Zhao, H., Zhao, Y., Cheng, B. & Xiang, Y. (2014) Genome-wide analysis of soybean HD-zip gene family and expression profiling under salinity and drought treatments. PLoS One, 9, e87156. - PubMed
  9. Chen, C.W., Lin, J. & Chu, Y.W. (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 14, S5. - PubMed
  10. Cong, L., Zheng, H.C., Zhang, Y.X. & Chai, T.Y. (2008) Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in tobacco. Plant Science, 174, 156-164. - PubMed
  11. Cui, M.H., Yoo, K.S., Hyoung, S., Nguyen, H.T.K., Kim, Y.Y., Kim, H.J. et al. (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Letters, 587, 1773-1778. - PubMed
  12. Dakal, T.C., Kala, D., Dhiman, G., Yadav, V., Krokhotin, A. & Dokholyan, N.V. (2017) Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Scientific Reports, 7, 6525. - PubMed
  13. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M. et al. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal, 39, 863-876. - PubMed
  14. Gabriel, S., Ziaugra, L. & Tabbaa, D. (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics, 2009, 19170031. - PubMed
  15. Gao, S., Song, T., Han, J., He, M., Zhang, Q., Zhu, Y. et al. (2020) A calcium-dependent lipid binding protein, OsANN10, is a negative regulator of osmotic stress tolerance in rice. Plant Science, 293, 1104-1120. - PubMed
  16. Garg, R., Shankar, R., Thakkar, B., Kudapa, H., Krishnamurthy, L., Mantri, N. et al. (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6, 19228. - PubMed
  17. Garg, R., Varshney, R.K. & Jain, M. (2014) Molecular genetics and genomics of abiotic stress responses. Frontiers in Plant Science, 5, 398. - PubMed
  18. Ghangal, R., Rajkumar, M.S., Garg, R. & Jain, M. (2020) Genome-wide analysis of glutathione S-transferase gene family in chickpea suggests its role during seed development and abiotic stress. Molecular Biology Reports, 47, 2749-2761. - PubMed
  19. Ghars, M.A., Parre, E., Debez, A., Bordenave, M., Richard, L., Leport, L. et al. (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 165, 588-599. - PubMed
  20. Gu, H., Jia, Y., Wang, X., Chen, Q., Shi, S., Ma, L. et al. (2012) Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Molecular Biology Reports, 39, 3565-3572. - PubMed
  21. Hassan, A.H.A., Alkhalifah, D.H.M., Al Yousef, S.A., Beemster, G.T.S., Mousa, A.S.M., Hozzein, W.N. et al. (2020) Salinity stress enhances the antioxidant capacity of Bacillus and Planococcus species isolated from saline lake environment. Frontiers in Microbiology, 11, 561816. - PubMed
  22. Hoshi, M., Ohki, Y., Ito, K., Tomita, T., Iwatsubo, T., Ishimaru, Y. et al. (2013) Experimental detection of proteolytic activity in a signal peptide peptidase of Arabidopsis thaliana. BMC Biochemistry, 6, 16. - PubMed
  23. Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A. et al. (2009) High-throughput genotyping by whole-genome resequencing. Genome Research, 19, 1068-1076. - PubMed
  24. Jain, M., Misra, G., Patel, R.K., Priya, P., Jhanwar, S., Khan, A.W. et al. (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). The Plant Journal, 74, 715-729. - PubMed
  25. Jain, M., Moharana, K.C., Shankar, R., Kumari, R. & Garg, R. (2014) Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnology Journal, 12, 253-264. - PubMed
  26. Jain, D., Roy, N. & Chattopadhyay, D. (2009) CaZF, a plant transcription factor functions through and parallel to HOG and calcinerium pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One, 4, e5154. - PubMed
  27. Jha, U.C., Bohra, A., Jha, R. & Parida, S.K. (2019) Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38, 255-277. - PubMed
  28. Jia, Y., Gu, H., Wang, X., Chen, Q., Shi, S., Zhang, J. et al. (2012) Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.). Molecular Biology Reports, 39, 2337-2345. - PubMed
  29. Johnston, A.D., Simões-Pires, C.A., Thompson, T.V., Suzuki, M. & Greally, J.M. (2019) Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nature Communications, 10, 3472. - PubMed
  30. Kaashyap, M., Ford, R., Bohra, A., Kuvalekar, A. & Mantri, N. (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Current Genomics, 18, 557-567. - PubMed
  31. Kant, P., Gordon, M., Kant, S., Zolla, G., Davydov, O., Heimer, Y.M. et al. (2008) Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant, Cell & Environment, 31, 697-714. - PubMed
  32. Kapilan, R., Vaziri, M. & Zwiazek, J.J. (2018) Regulation of aquaporins in plants under stress. Biological Research, 51, 4. - PubMed
  33. Kaur, P., Kaur, J., Kaur, S., Singh, S. & Singh, I. (2014) Salinity induced physiological and biochemical changes in chickpea (Cicer arietinum L.) genotypes. Journal of Applied and Natural Science, 6, 578-588. - PubMed
  34. Kaur, H., Shukla, R.K., Yadav, G., Chattopadhyay, D. & Majee, M. (2008) Two divergent genes encoding l-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant, Cell & Environment, 31, 1701-1716. - PubMed
  35. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. & Sternberg, M.J.E. (2016) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845-858. - PubMed
  36. Kotula, L., Clode, P.L., Jimenez, J.D.L.C. & Colmer, T.D. (2019) Salinity tolerance in chickpea is associated with the ability to “exclude” Na from leaf mesophyll cells. Journal of Experimental Botany, 70, 4991-5002. - PubMed
  37. Krasensky, J. & Jonak, C. (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593-1608. - PubMed
  38. Kujur, A., Bajaj, D., Upadhyaya, H.D., Das, S., Ranjan, R., Shree, T. et al. (2015) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Frontiers in Plant Science, 6, 162. - PubMed
  39. Kumar, N., Bharadwaj, C., Soni, A., Sachdeva, S., Yadav, M.C., Singh, M.P. et al. (2020) Physio-morphological and molecular analysis for salt tolerance in chickpea (Cicer arietinum). Indian Journal of Agricultural Sciences, 90, 804-808. - PubMed
  40. Lam, H.M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.L. et al. (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42, 1053-1059. - PubMed
  41. Lee, J.S., Sajise, A.G.C., Gregorio, G.B., Kretzschmar, T., Ismail, A.M. & Wissuwa, M. (2017) Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis. Theoretical and Applied Genetics, 130, 1903-1914. - PubMed
  42. Li, Y., Ruperao, P., Batley, J., Edwards, D., Khan, T., Colmer, T.D. et al. (2018) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Frontiers in Plant Science, 9, 190. - PubMed
  43. Luo, J., Yu, C.M., Yan, M. & Chen, Y.H. (2020) Molecular characterization of the promoter of the stress-inducible ZmMYB30 gene in maize. Biologia Plantarum, 64, 200-210. - PubMed
  44. Lyons, D.M. & Lauring, A.S. (2017) Evidence for the selective basis of transition-to-transversion substitution bias in two RNA viruses. Molecular Biology and Evolution, 34, 3205-3215. - PubMed
  45. Mao, G., Seebeck, T., Schrenker, D. & Yu, O. (2013) CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC Plant Biology, 13, 169. - PubMed
  46. Mittler, R., Kim, Y.S., Song, L., Coutu, J., Coutu, A., Ciftci-Yilmaz, S. et al. (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters, 580, 6537-6542. - PubMed
  47. Nguyen, L.V., Seok, H.Y., Woo, D.H., Lee, S.Y. & Moon, Y.H. (2018) Overexpression of the DEAD-box RNA helicase gene AtRH17 confers tolerance to salt stress in Arabidopsis. International Journal of Molecular Sciences, 19, 3777. - PubMed
  48. Patel, R.K. & Jain, M. (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One, 7, e30619. - PubMed
  49. Porceddu, A., Zenoni, S. & Camiolo, S. (2013) The signatures of selection for translational accuracy in plant genes. Genome Biology and Evolution, 5, 1117-1126. - PubMed
  50. Pushpavalli, R., Berger, J.D., Turner, N.C., Siddique, K.H.M., Colmer, T.D. & Vadez, V. (2020) Cross-tolerance for drought, heat and salinity stresses in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 206, 405-419. - PubMed
  51. Pushpavalli, R., Krishnamurthy, L., Thudi, M., Gaur, P.M., Rao, M.V., Siddique, K.H.M. et al. (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biology, 15, 124. - PubMed
  52. Qi, J., Liu, X., Liu, J., Yu, H., Wang, W., Wang, Z. et al. (2014) Molecular characterization of heat shock protein 70 (HSP 70) promoter in Japanese flounder (Paralichthys olivaceus), and the association of Pohsp70 SNPs with heat-resistant trait. Fish & Shellfish Immunology, 39, 503-511. - PubMed
  53. Qin, Y., Tian, Y., Han, L. & Yang, X. (2013) Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 441, 476-481. - PubMed
  54. Rajkumar, M.S., Garg, R. & Jain, M. (2018) Genome-wide discovery of DNA polymorphisms among chickpea cultivars with contrasting seed size/weight and their functional relevance. Scientific Reports, 8, 16795. - PubMed
  55. Rajkumar, M.S., Garg, R. & Jain, M. (2021) Genome resequencing reveals DNA polymorphisms associated with seed size/weight determination in chickpea. Genomics, 113, 1458-1468. - PubMed
  56. Rani, A., Devi, P., Jha, U.C., Sharma, K.D., Siddique, K.H.M. & Nayyar, H. (2020) Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Frontiers in Plant Science, 10, 1759. - PubMed
  57. Riyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K.K. et al. (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules, 10, 959. - PubMed
  58. Romo, S., Labrador, E. & Dopico, B. (2001) Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry, 39, 1017-1026. - PubMed
  59. Ryu, H. & Cho, Y.G. (2015) Plant hormones in salt stress tolerance. Journal of Plant Biology, 58, 147-155. - PubMed
  60. Sadder, M.T., Alshomali, I., Ateyyeh, A. & Musallam, A. (2021) Physiological and molecular responses for long term salinity stress in common fig (Ficus carica L.). Physiology and Molecular Biology of Plants, 27, 107-117. - PubMed
  61. Sagar, S., Biswas, D.K. & Singh, A. (2020) Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum). Gene, 753, 144797. - PubMed
  62. Sairam, R.K. & Tyagi, A. (2004) Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86, 407-421. - PubMed
  63. Sakuraba, Y., Bülbül, S., Piao, W., Choi, G. & Paek, N.C. (2017) Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways. The Plant Journal, 92, 1106-1120. - PubMed
  64. Saleh, M.A., Solayman, M., Paul, S., Saha, M., Khalil, M.I. & Gan, S.H. (2016) Impacts of nonsynonymous single nucleotide polymorphisms of adiponectin receptor 1 gene on corresponding protein stability: a computational approach. BioMed Research International, 2016, 9142190. - PubMed
  65. Shukla, R.K., Raha, S., Tripathi, V. & Chattopadhyay, D. (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiology, 142, 113-123. - PubMed
  66. Singh, A. & Pandey, G.K. (2016) How phospholipase c regulates stress tolerance and development in plants? J Cell, 1, 1000132. - PubMed
  67. Singh, V., Singh, A.P., Bhadoria, J., Giri, J., Singh, J., Vineeth, T.V. et al. (2018) Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 255, 1667-1681. - PubMed
  68. Soren, K.R., Madugula, P., Kumar, N., Barmukh, R., Sengar, M.S., Bharadwaj, C. et al. (2020) Genetic dissection and identification of candidate genes for salinity tolerance using axiom®cicerSNP array in chickpea. International Journal of Molecular Sciences, 21, 5058. - PubMed
  69. Stoltzfus, A. & Norris, R.W. (2015) On the causes of evolutionary transition:transversion bias article fast track, 33, 595-602. - PubMed
  70. Thudi, M., Khan, A.W., Kumar, V., Gaur, P.M., Katta, K., Garg, V. et al. (2016) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biology, 16, 10. - PubMed
  71. Tola, A.J., Jaballi, A., Germain, H. & Missihoun, T.G. (2020) Recent development on plant aldehyde dehydrogenase enzymes and their functions in plant development and stress signaling. Genes, 31, 51. - PubMed
  72. Vadez, V., Krishnamurthy, L., Serraj, R., Gaur, P.M., Upadhyaya, H.D., Hoisington, D.A. et al. (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research, 104, 123-129. - PubMed
  73. Vadez, V., Krishnamurthy, L., Thudi, M., Anuradha, C., Colmer, T.D., Turner, N.C. et al. (2012) Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Molecular Breeding, 30, 9-21. - PubMed
  74. Varshney, R.K., Song, C., Saxena, R.K., Azam, S., Yu, S., Sharpe, A.G. et al. (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31, 240-246. - PubMed
  75. Varshney, R.K., Thudi, M., Roorkiwal, M., He, W., Upadhyaya, H.D., Yang, W. et al. (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 5, 857-864. - PubMed
  76. Wang, B., Lüttge, U. & Ratajczak, R. (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany, 52, 2355-2365. - PubMed
  77. Wang, F., Zhu, H., Chen, D., Li, Z., Peng, R. & Yao, Q. (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 125, 387-398. - PubMed
  78. Yang, T., Lv, R., Li, J., Lin, H. & Xi, D. (2018) Phytochrome A and B negatively regulate salt stress tolerance of Nicotiana tobacum via ABA-jasmonic acid synergistic cross-talk. Plant & Cell Physiology, 59, 2381-2393. - PubMed
  79. You, Z., Zhang, Q., Peng, Z. & Miao, X. (2019) Lipid droplets mediate salt stress tolerance in Parachlorella kessleri. Plant Physiology, 181, 510-526. - PubMed
  80. Yu, Y., Wang, P., Bai, Y., Wang, Y., Wan, H., Liu, C. et al. (2020) The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environmental and Experimental Botany, 176, 104056. - PubMed
  81. Zhang, X., Yao, Y., Li, X., Zhang, L. & Fan, S. (2020) Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Scientific Reports, 10, 4236. - PubMed

Substances

MeSH terms

Publication Types

Grant support