Display options
Share it on

Front Physiol. 2021 Jul 27;12:642299. doi: 10.3389/fphys.2021.642299. eCollection 2021.

Irritant Inhalation Evokes P Wave Morphological Changes in Spontaneously Hypertensive Rats via Reflex Modulation of the Autonomic Nervous System.

Frontiers in physiology

J Shane Hooper, Thomas E Taylor-Clark

Affiliations

  1. Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

PMID: 34385930 PMCID: PMC8353281 DOI: 10.3389/fphys.2021.642299

Abstract

Irritant inhalation is associated with increased incidence of atrial fibrillation (AF) and stroke. Irritant inhalation acutely regulates cardiac function via autonomic reflexes. Increases in parasympathetic and sympathetic reflexes may increase atrial susceptibility to ectopic activity and the initiation of arrhythmia such as AF. Both age and hypertension are risk factors for AF. We have shown that irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats to include a sympathetic component in addition to the parasympathetic reflex observed in normotensive Wistar-Kyoto (WKY) rats. Here, we analyzed P wave morphology in 15-week old WKY and SH rats during inhalation of the transient receptor potential ankyrin 1 agonist allyl isothiocyanate (AITC). P Wave morphology was normal during vehicle inhalation but was variably modulated by AITC. AITC increased RR intervals (RRi), PR intervals, and the P Wave duration. In SH rats only, AITC inhalation increased the occurrence of negative P waves. The incidence of AITC-evoked negative P waves in SH rats was dependent on RRi, increasing during bradycardic and tachycardic cardiac cycles. Inhibition of both parasympathetic (using atropine) and sympathetic (using atenolol) components of the pulmonary-cardiac reflex decreased the incidence of negative P waves. Lastly, the probability of evoking a negative P Wave was increased by the occurrence of preceding negative P waves. We conclude that the remodeled irritant-evoked pulmonary-cardiac reflex in SH rats provides a substrate for altered P Wave morphologies. These are likely ectopic atrial beats that could provide a trigger for AF initiation in structurally remodeled atria.

Copyright © 2021 Hooper and Taylor-Clark.

Keywords: ECG; P wave; TRPA1; atrial fibrillation; autonomic (vegetative) nervous system; ectopic beat; hypertension; irritant

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. JACC Clin Electrophysiol. 2018 May;4(5):686-695 - PubMed
  2. Am J Physiol Heart Circ Physiol. 2012 Aug 1;303(3):H386-92 - PubMed
  3. J Appl Physiol (1985). 2016 Mar 15;120(6):580-91 - PubMed
  4. Heart Rhythm. 2009 Dec;6(12):1772-9 - PubMed
  5. Int Heart J. 2019 Mar 20;60(2):400-410 - PubMed
  6. Circ Res. 2014 Apr 25;114(9):1500-15 - PubMed
  7. Reprod Toxicol. 2002 Jan-Feb;16(1):1-7 - PubMed
  8. Circ J. 2008 Oct;72(10):1650-7 - PubMed
  9. Circulation. 2010 Jun 1;121(21):2331-78 - PubMed
  10. Hypertension. 2007 Mar;49(3):498-505 - PubMed
  11. BMJ. 2019 Dec 30;367:l6720 - PubMed
  12. J Electrocardiol. 2003 Jan;36(1):33-40 - PubMed
  13. Pharmacol Biochem Behav. 1974 Nov-Dec;2(6):843-5 - PubMed
  14. Br Heart J. 1977 Jun;39(6):634-40 - PubMed
  15. Circ Res. 2014 Mar 14;114(6):1004-21 - PubMed
  16. Am Heart J. 1998 Jun;135(6 Pt 1):1010-9 - PubMed
  17. Rev Physiol Biochem Pharmacol. 1984;99:1-110 - PubMed
  18. Exp Physiol. 2011 Feb;96(2):125-33 - PubMed
  19. J Anat. 1986 Apr;145:133-42 - PubMed
  20. Environ Health Perspect. 2005 Mar;113(3):304-9 - PubMed
  21. Circulation. 1998 Sep 8;98(10):946-52 - PubMed
  22. Circ Res. 1966 Sep;19(3):576-83 - PubMed
  23. Am J Respir Cell Mol Biol. 2009 Jun;40(6):756-62 - PubMed
  24. J Occup Environ Med. 2007 Jun;49(6):610-7 - PubMed
  25. Heart Rhythm. 2011 Apr;8(4):583-9 - PubMed
  26. Sci Rep. 2019 Aug 13;9(1):11781 - PubMed
  27. J Cardiovasc Electrophysiol. 2002 Aug;13(8):801-8 - PubMed
  28. Environ Res. 2008 Jun;107(2):178-84 - PubMed
  29. Annu Rev Physiol. 2000;62:51-77 - PubMed
  30. Clin Exp Hypertens. 1978;1(1):67-86 - PubMed
  31. Chem Res Toxicol. 2019 Jun 17;32(6):1040-1050 - PubMed
  32. Am J Physiol. 1997 Aug;273(2 Pt 2):H805-16 - PubMed
  33. Am J Cardiol. 1979 Oct 22;44(5):884-8 - PubMed
  34. J Am Heart Assoc. 2018 Jan 29;7(3): - PubMed
  35. PLoS One. 2013 Aug 27;8(8):e72416 - PubMed
  36. Heart. 2006 Feb;92(2):220-7 - PubMed
  37. J Physiol. 2010 Feb 1;588(Pt 3):423-33 - PubMed
  38. Sci Rep. 2016 May 26;6:26799 - PubMed
  39. Epidemiology. 2000 Jan;11(1):11-7 - PubMed
  40. Circ Res. 1976 May;38(5):423-9 - PubMed
  41. Circ Res. 1975 Aug;37(2):156-63 - PubMed
  42. Chem Res Toxicol. 2011 Jun 20;24(6):950-9 - PubMed
  43. Physiology (Bethesda). 2020 Nov 1;35(6):363-374 - PubMed
  44. Pacing Clin Electrophysiol. 2004 Feb;27(2):182-8 - PubMed
  45. Eur Respir J Suppl. 2003 May;40:76s-80s - PubMed
  46. J Physiol. 2019 Jul;597(13):3255-3279 - PubMed
  47. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12248-52 - PubMed
  48. Environ Health Perspect. 2005 Jul;113(7):883-7 - PubMed
  49. J Am Coll Cardiol. 2013 Aug 27;62(9):816-25 - PubMed
  50. N Engl J Med. 1998 Sep 3;339(10):659-66 - PubMed
  51. Environ Health Perspect. 2007 Nov;115(11):1617-22 - PubMed
  52. Circulation. 2004 Jan 6;109(1):71-7 - PubMed
  53. Br J Pharmacol. 2007 Apr;150(7):899-905 - PubMed
  54. Cardiovasc Res. 2005 May 1;66(2):353-63 - PubMed

Publication Types

Grant support