Display options
Share it on

Nat Metab. 2021 Nov;3(11):1466-1475. doi: 10.1038/s42255-021-00479-4. Epub 2021 Sep 27.

Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication.

Nature metabolism

Junjun Chu, Changsheng Xing, Yang Du, Tianhao Duan, Siyao Liu, Pengfei Zhang, Chumeng Cheng, Jill Henley, Xin Liu, Chen Qian, Bingnan Yin, Helen Yicheng Wang, Rong-Fu Wang

Affiliations

  1. Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  2. Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  3. Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
  4. The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  5. Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  6. Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. [email protected].
  7. Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. [email protected].
  8. Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. [email protected].

PMID: 34580494 PMCID: PMC8475461 DOI: 10.1038/s42255-021-00479-4

Abstract

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19 is a virus-induced inflammatory disease of the airways and lungs that leads to severe multi-organ damage and death. Here we show that cellular lipid synthesis is required for SARS-CoV-2 replication and offers an opportunity for pharmacological intervention. Screening a short-hairpin RNA sublibrary that targets metabolic genes, we identified genes that either inhibit or promote SARS-CoV-2 viral infection, including two key candidate genes, ACACA and FASN, which operate in the same lipid synthesis pathway. We further screened and identified several potent inhibitors of fatty acid synthase (encoded by FASN), including the US Food and Drug Administration-approved anti-obesity drug orlistat, and found that it inhibits in vitro replication of SARS-CoV-2 variants, including more contagious new variants, such as Delta. In a mouse model of SARS-CoV-2 infection (K18-hACE2 transgenic mice), injections of orlistat resulted in lower SARS-CoV-2 viral levels in the lung, reduced lung pathology and increased mouse survival. Our findings identify fatty acid synthase inhibitors as drug candidates for the prevention and treatment of COVID-19 by inhibiting SARS-CoV-2 replication. Clinical trials are needed to evaluate the efficacy of repurposing fatty acid synthase inhibitors for severe COVID-19 in humans.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Peiris, J. S. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325 (2003). - PubMed
  2. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012). - PubMed
  3. de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016). - PubMed
  4. Wadman, M. Why obesity worsens COVID-19. Science 369, 1280–1281 (2020). - PubMed
  5. Stefan, N., Birkenfeld, A. L. & Schulze, M. B. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat. Rev. Endocrinol. 17, 135–149 (2021). - PubMed
  6. Simonnet, A. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 28, 1195–1199 (2020). - PubMed
  7. Drucker, D. J. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metab. 33, 479–498 (2021). - PubMed
  8. Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020). - PubMed
  9. Jin, Z. et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020). - PubMed
  10. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368, 409–412 (2020). - PubMed
  11. Li, Z. et al. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl Acad. Sci. USA 117, 27381–27387 (2020). - PubMed
  12. Qiao, J. et al. SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model. Science https://doi.org/10.1126/science.abf1611 (2021). - PubMed
  13. Riva, L. et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 586, 113–119 (2020). - PubMed
  14. Yang, L. et al. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol. Sin. https://doi.org/10.1038/s41401-020-00556-6 (2020). - PubMed
  15. Yuan, S. et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature https://doi.org/10.1038/s41586-021-03431-4 (2021). - PubMed
  16. Beigel, J. H. et al. Remdesivir for the treatment of COVID-19: final report. N. Engl. J. Med. 383, 1813–1826 (2020). - PubMed
  17. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020). - PubMed
  18. Goldman, J. D. et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N. Engl. J. Med. 383, 1827–1837 (2020). - PubMed
  19. Hoffmann, H. H. et al. TMEM41B is a pan-flavivirus host factor. Cell 184, 133–148 (2021). - PubMed
  20. Schneider, W. M. et al. Genome-scale Identification of SARS-CoV-2 and pan-coronavirus host factor networks. Cell 184, 120–132 (2021). - PubMed
  21. Wei, J. et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 184, 76–91 (2021). - PubMed
  22. Wang, R. et al. Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses. Cell 184, 106–119 (2021). - PubMed
  23. Daniloski, Z. et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell 184, 92–105 (2021). - PubMed
  24. Wong, J. P. & Damania, B. SARS-CoV-2 dependence on host pathways. Science 371, 884–885 (2021). - PubMed
  25. White, K. M. et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 371, 926–931 (2021). - PubMed
  26. Ho, J. S. Y. et al. TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell 184, 2618–2632 (2021). - PubMed
  27. Soliman, S., Faris, M. E., Ratemi, Z. & Halwani, R. Switching host metabolism as an approach to dampen SARS-CoV-2 infection. Ann. Nutr. Metab. 76, 297–303 (2020). - PubMed
  28. Tanner, J. E. & Alfieri, C. The fatty acid lipid metabolism nexus in COVID-19. Viruses https://doi.org/10.3390/v13010090 (2021). - PubMed
  29. Ayres, J. S. A metabolic handbook for the COVID-19 pandemic. Nat. Metab. 2, 572–585 (2020). - PubMed
  30. Mullen, P. J. et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat. Commun. 12, 1876 (2021). - PubMed
  31. Zhang, Y. et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat. Commun. 12, 1676 (2021). - PubMed
  32. Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848 (2020). - PubMed
  33. Kridel, S. J., Axelrod, F., Rozenkrantz, N. & Smith, J. W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64, 2070–2075 (2004). - PubMed
  34. Wu, Z. et al. Palmitoylation of SARS-CoV-2 S protein is essential for viral infectivity. Signal Transduct. Target Ther. 6, 231 (2021). - PubMed
  35. Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020). - PubMed
  36. Rathnasinghe, R. et al. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg. microbes Infect. 9, 2433–2445 (2020). - PubMed
  37. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science https://doi.org/10.1126/science.abg3055 (2021). - PubMed
  38. Davies, N. G. et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature https://doi.org/10.1038/s41586-021-03426-1 (2021). - PubMed
  39. Washington, N. L. et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell 184, 2587–2594 (2021). - PubMed
  40. Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell https://doi.org/10.1016/j.cell.2021.02.037 (2021). - PubMed
  41. Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01318-5 (2021). - PubMed
  42. Lopez Bernal, J. et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (δ) variant. N. Engl. J. Med. 385, 585–594 (2021). - PubMed
  43. Sheikh, A. et al. SARS-CoV-2 δ VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 397, 2461–2462 (2021). - PubMed
  44. Lorizate, M. & Krausslich, H. G. Role of lipids in virus replication. Cold Spring Harb. Perspect. Biol. 3, a004820 (2011). - PubMed
  45. Heck, A. M., Yanovski, J. A. & Calis, K. A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 20, 270–279 (2000). - PubMed
  46. Hitakarun, A. et al. Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Sci. Rep. 10, 1499 (2020). - PubMed
  47. Williams, C. F. et al. Inhibitors of VPS34 and fatty-acid metabolism suppress SARS-CoV-2 replication. Cell Reports 36, 109479 (2021). - PubMed
  48. Kim, J. Y. et al. Palmitic acid-BSA enhances amyloid-β production through GPR40-mediated dual pathways in neuronal cells: involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways. Sci. Rep. 7, 4335 (2017). - PubMed

Publication Types

Grant support