Display options
Share it on

Health Technol Assess. 2021 Sep;25(56):1-230. doi: 10.3310/hta25560.

Non-invasive imaging software to assess the functional significance of coronary stenoses: a systematic review and economic evaluation.

Health technology assessment (Winchester, England)

Ana Duarte, Alexis Llewellyn, Ruth Walker, Laetitia Schmitt, Kath Wright, Simon Walker, Claire Rothery, Mark Simmonds

Affiliations

  1. Centre for Health Economics, University of York, York, UK.
  2. Centre for Reviews and Dissemination, University of York, York, UK.

PMID: 34588097 DOI: 10.3310/hta25560

Abstract

BACKGROUND: QAngio

OBJECTIVES: The objectives were to determine the clinical effectiveness and cost-effectiveness of QAngio XA 3D/QFR and CAAS vFFR.

METHODS: We performed a systematic review of all evidence on QAngio XA 3D/QFR and CAAS vFFR, including diagnostic accuracy, clinical effectiveness, implementation and economic analyses. We searched MEDLINE and other databases to January 2020 for studies where either technology was used and compared with fractional flow reserve in patients with intermediate stenosis. The risk of bias was assessed with quality assessment of diagnostic accuracy studies. Meta-analyses of diagnostic accuracy were performed. Clinical and implementation outcomes were synthesised narratively. A simulation study investigated the clinical impact of using QAngio XA 3D/QFR. We developed a de novo decision-analytic model to estimate the cost-effectiveness of QAngio XA 3D/QFR and CAAS vFFR relative to invasive fractional flow reserve or invasive coronary angiography alone. Scenario analyses were undertaken to explore the robustness of the results to variation in the sources of data used to populate the model and alternative assumptions.

RESULTS: Thirty-nine studies (5440 patients) of QAngio XA 3D/QFR and three studies (500 patients) of CAAS vFFR were included. QAngio XA 3D/QFR had good diagnostic accuracy to predict functionally significant fractional flow reserve (≤ 0.80 cut-off point); contrast-flow quantitative flow ratio had a sensitivity of 85% (95% confidence interval 78% to 90%) and a specificity of 91% (95% confidence interval 85% to 95%). A total of 95% of quantitative flow ratio measurements were within 0.14 of the fractional flow reserve. Data on the diagnostic accuracy of CAAS vFFR were limited and a full meta-analysis was not feasible. There were very few data on clinical and implementation outcomes. The simulation found that quantitative flow ratio slightly increased the revascularisation rate when compared with fractional flow reserve, from 40.2% to 42.0%. Quantitative flow ratio and fractional flow reserve resulted in similar numbers of subsequent coronary events. The base-case cost-effectiveness results showed that the test strategy with the highest net benefit was invasive coronary angiography with confirmatory fractional flow reserve. The next best strategies were QAngio XA 3D/QFR and CAAS vFFR (without fractional flow reserve). However, the difference in net benefit between this best strategy and the next best was small, ranging from 0.007 to 0.012 quality-adjusted life-years (or equivalently £140-240) per patient diagnosed at a cost-effectiveness threshold of £20,000 per quality-adjusted life-year.

LIMITATIONS: Diagnostic accuracy evidence on CAAS vFFR, and evidence on the clinical impact of QAngio XA 3D/QFR, were limited.

CONCLUSIONS: Quantitative flow ratio as measured by QAngio XA 3D/QFR has good agreement and diagnostic accuracy compared with fractional flow reserve and is preferable to standard invasive coronary angiography alone. It appears to have very similar cost-effectiveness to fractional flow reserve and, therefore, pending further evidence on general clinical benefits and specific subgroups, could be a reasonable alternative. The clinical effectiveness and cost-effectiveness of CAAS vFFR are uncertain. Randomised controlled trial evidence evaluating the effect of quantitative flow ratio on clinical and patient-centred outcomes is needed.

FUTURE WORK: Studies are required to assess the diagnostic accuracy and clinical feasibility of CAAS vFFR. Large ongoing randomised trials will hopefully inform the clinical value of QAngio XA 3D/QFR.

STUDY REGISTRATION: This study is registered as PROSPERO CRD42019154575.

FUNDING: This project was funded by the National Institute for Health Research (NIHR) Evidence Synthesis programme and will be published in full in

Keywords: CAAS VFFR; CORONARY STENOSIS; COST-EFFECTIVENESS; DIAGNOSTIC ACCURACY; INVASIVE CORONARY ANGIOGRAPHY; META-ANALYSIS; QANGIO XA 3D/QFR; REVASCULARISATION; SYSTEMATIC REVIEW

References

  1. Brown L, Morris S, Neave A. Health Survey for England 2017: Adult Social Care. London: NHS Digital; 2018. - PubMed
  2. National Institute for Health and Care Excellence (NICE). Recent-onset Chest Pain of Suspected Cardiac Origin: Assessment and Diagnosis. Clinical Guideline [CG95]. URL: www.nice.org.uk/guidance/cg95 (accessed 26 May 2021). - PubMed
  3. National Institute for Health and Care Excellence (NICE). HeartFlow FFRCT for Estimating Fractional Flow Reserve from Coronary CT Angiography. Medical Technologies Guidance [MTG32]. URL: www.nice.org.uk/guidance/mtg32 (accessed 26 May 2021). - PubMed
  4. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J 2020;41:407–77. https://doi.org/10.1093/eurheartj/ehz425 - PubMed
  5. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2012;60:e44–164. https://doi.org/10.1016/j.jacc.2012.07.013 - PubMed
  6. National Institute for Health and Care Excellence (NICE). QAngio XA 3D/ QFR and CAAS vFFR Imaging Software for Assessing the Functional Significance of Coronary Obstructions During Invasive Coronary Angiography. Final Scope. London: NICE; 2019. URL: www.nice.org.uk/guidance/dg43/documents/final-scope (accessed 8 September 2021). - PubMed
  7. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097 - PubMed
  8. Westra J, Tu S, Campo G, Qiao S, Matsuo H, Qu X, et al. Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: an individual patient-data meta-analysis. Catheter Cardiovasc Interv 2019;94:693–701. https://doi.org/10.1002/ccd.28283 - PubMed
  9. Götberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017;376:1813–23. https://doi.org/10.1056/NEJMoa1616540 - PubMed
  10. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005;58:982–90. https://doi.org/10.1016/j.jclinepi.2005.02.022 - PubMed
  11. Simmonds MC, Higgins JP. A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res 2016;25:2858–77. https://doi.org/10.1177/0962280214534409 - PubMed
  12. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 2001;20:2865–84. https://doi.org/10.1002/sim.942 - PubMed
  13. Ahn JM, Park DW, Shin ES, Koo BK, Nam CW, Doh JH, et al. Fractional flow reserve and cardiac events in coronary artery disease: data from a prospective IRIS-FFR Registry (Interventional Cardiology Research Incooperation Society Fractional Flow Reserve). Circulation 2017;135:2241–51. https://doi.org/10.1161/CIRCULATIONAHA.116.024433 - PubMed
  14. Andersen BK, Vestergaard M-B, Andreasen LN, Tu S, Krusell L, Maeng M, et al. CRT-400.12 Feasibility and diagnostic precision of in-procedure computed fractional flow reserve: the wire-free invasive functional imaging (WIFI) Study. JACC Cardiovasc Interv 2017;10:S51. https://doi.org/10.1016/j.jcin.2016.12.177 - PubMed
  15. Asano T, Katagiri Y, Chang CC, Kogame N, Chichareon P, Takahashi K, et al. Angiography-derived fractional flow reserve in the SYNTAX II trial: feasibility, diagnostic performance of quantitative flow ratio, and clinical prognostic value of functional SYNTAX score derived from quantitative flow ratio in patients with 3-vessel disease. JACC Cardiovasc Interv 2019;12:259–70. https://doi.org/10.1016/j.jcin.2018.09.023 - PubMed
  16. Cliff Li KF, Ong PJL. TCTAP A-127 correlation of quantitative flow ratio assessment against instantaneous wave-free ratio in hemodynamic evaluation of coronary lesions. J Am Coll Cardiol 2019;73:S66. https://doi.org/10.1016/j.jacc.2019.03.173 - PubMed
  17. Cortés C, Rodríguez-Gabella T, Gutiérrez H, Arnold R, Serrador AM, Ramos B, et al. Quantitative flow ratio in myocardial infarction for the evaluation of non-infarct-related arteries. The QIMERA pilot study. REC Interv Cardiol 2019;1:13–20 https://doi.org/10.24875/RECICE.M19000007 - PubMed
  18. Daemen J, Masdjedi K, Balbi M, Nuis RJ, van Zandvoort L, Ligthart J, et al. Extended validation of novel 3-dimensional quantitative coronary angiography (3D-QCA) based software to calculate vessel fractional flow reserve (vFFR): the FAST-EXTEND study. JACC Cardiovasc Interv 2019;12(Suppl.):S17. https://doi.org/10.1016/j.jcin.2019.01.066 - PubMed
  19. Ely Pizzato P, Samdani AJ, Vergara-Martel A, Palma Dallan LA, Tensol Rodrigues Pereira G, Zago E, et al. Feasibility of coronary angiogram-derived vessel fractional flow reserve in the setting of standard of care percutaneous coronary intervention and its correlation with invasive FFR. Int J Cardiol 2019;301:45–9. https://doi.org/10.1016/j.ijcard.2019.10.054 - PubMed
  20. Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, et al. Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction. Circ J 2018;82:807–14. https://doi.org/10.1253/circj.CJ-17-0949 - PubMed
  21. Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, et al. Quantitative flow ratio and instantaneous wave-free ratio for the assessment of the functional severity of intermediate coronary artery stenosis. Coron Artery Dis 2018;29:611–17. https://doi.org/10.1097/MCA.0000000000000650 - PubMed
  22. Goto S, Lauri F, Mejia-Renteria H, Liontou C, Lee H, Tanigaki T, et al. Angiography-Derived Functional Assessment of Left Main Coronary Stenoses. Paper presented at EuroPCR 2019, 21–4 May 2019, Paris, France. - PubMed
  23. Hamaya R, Hoshino M, Kanno Y, Yamaguchi M, Ohya H, Sumino Y, et al. Prognostic implication of three-vessel contrast-flow quantitative flow ratio in patients with stable coronary artery disease. EuroIntervention 2019;15:180–8. https://doi.org/10.4244/EIJ-D-18-00896 - PubMed
  24. Hwang D, Choi KH, Lee JM, Mejia-Renteria H, Kim J, Park J, et al. Diagnostic agreement of quantitative flow ratio with fractional flow reserve and instantaneous wave-free ratio. J Am Heart Assoc 2019;8:e011605. https://doi.org/10.1161/JAHA.118.011605 - PubMed
  25. Ishihara T, Takahara M, Tsujimura T, Kurata N, Iida O, Asai M, et al. Retrospective assessments of intra- and inter-rater reliability of quantitative flow ratio. J Am Coll Cardiol 2019;73(Suppl. 1):1165. https://doi.org/10.1016/S0735-1097(19)31772-3 - PubMed
  26. Jin CY, Ramasamy A, Bourantas CV, Safi H, Kilic Y, Tufaro V, et al. Diagnostic accuracy of quantitative flow ratio (QFR) and vessel fractional flow reserve (vFFR) compared with fractional flow reserve (FFR) based on 7.5 frames/second coronary angiography. Eur Heart J 2019;40(Suppl. 1):1671. https://doi.org/10.1093/eurheartj/ehz748.1037 - PubMed
  27. Kajita A, Bezerra CG, Ozaki Y, Dan K, Melaku GD, Pinton FA, et al. Comparison between fractional flow reserve (FFR) vs. computational fractional flow reserve derived from three-dimensional intravascular ultrasound (IVUSFR) and quantitative flow ratio (QFR). JACC Cardiovasc Interv 2019;12(Suppl.):S40. https://doi.org/10.1016/j.jcin.2019.01.146 - PubMed
  28. Kameyama T, Kubo T, Emori H, Ino Y, Matsuo Y, Yamano T, et al. Usefulness of QFR measurement for non-culprit lesion of ACS patients. J Am Coll Cardiol 2016;68:B219. https://doi.org/10.1016/j.jacc.2016.09.679 - PubMed
  29. Kanno Y, Hoshino M, Hamaya R, Sugiyama T, Kanaji Y, Usui E, et al. Functional classification discordance in intermediate coronary stenoses between fractional flow reserve and angiography-based quantitative flow ratio. Open Heart 2020;7:e001179. https://doi.org/10.1136/openhrt-2019-001179 - PubMed
  30. Kanno Y, Hoshino M, Sugano A, Kanaji Y, Yamaguchi M, Sumino Y, et al. Prognostic value of contrast-flow quantitative flow ratio in patients with revascularization deferral based on preserved fractional flow reserve. J Am Coll Cardiol 2019;73(Suppl. 1):1171. https://doi.org/10.1016/S0735-1097(19)31778-4 - PubMed
  31. Kirigaya H, Okada K, Hibi K, Akiyama E, Matsuzawa Y, Iwahashi N, et al. TCT-325 quantitative flow ratio for assessment of nonculprit coronary lesions in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 2019;74(Suppl.):B323. https://doi.org/10.1016/j.jacc.2019.08.405 - PubMed
  32. Kołtowski Ł, Zaleska M, Maksym J, Tomaniak M, Soliński M, Puchta D, et al. Quantitative flow ratio derived from diagnostic coronary angiography in assessment of patients with intermediate coronary stenosis: a wire-free fractional flow reserve study. Clin Res Cardiol 2018;107:858–67. https://doi.org/10.1007/s00392-018-1258-7 - PubMed
  33. Kleczyński P, Dziewierz A, Rzeszutko L, Dudek D, Legutko J. Is quantitative flow ratio enough to accurately assess intermediate coronary stenosis? A comparison study with fractional flow reserve. Cardiol J 2019;26:793–5. https://doi.org/10.5603/CJ.2019.0116 - PubMed
  34. Liontou C, Mejía-Renteria H, Lauri FM, Goto S, Lee HJ, Nakayama M, et al. Quantitative flow ratio for functional evaluation of in-stent restenosis. EuroIntervention 2021;17:e396–8. - PubMed
  35. Liu T, Somi S, Bleeker G, Gotte M. Functional Assessment of Coronary Stenoses by Quantitative Flow Ratio: A Non-Invasive Alternative for Standard Fractional Flow Reserve. Paper presented at the European Society of Cardiology Congress 2017, 20–26 August 2017, Barcelona, Spain. https://doi.org/10.1093/eurheartj/ehx502.P2375 - PubMed
  36. Mehta O, Hay M, Ihdayhid AR, Cameron J, Wong D. TCT-333 Comparison of diagnostic accuracy between quantitative flow ratio, instantaneous wave-free ratio and DILEMMA score against fractional flow reserve. J Am Coll Cardiol 2019;74(Suppl.):B331. https://doi.org/10.1016/j.jacc.2019.08.414 - PubMed
  37. Mejia-Renteria H, Lauri FM, Lee JM, McInerney A, van der Hoeven NW, de Waard GA, et al. Interindividual variations in the adenosine-induced hemodynamics during fractional flow reserve evaluation: implications for the use of quantitative flow ratio in assessing intermediate coronary stenoses. J Am Heart Assoc 2019;8:e012906. https://doi.org/10.1161/JAHA.119.012906 - PubMed
  38. Neylon A, Roy A, Hovasse T, Chevalier B, Garot P, Benamer H, et al. Novel non-invasive quantitative flow ratio for estimating fractional flow reserve. J Am Coll Cardiol 2016;68(Suppl.):B210. https://doi.org/10.1016/j.jacc.2016.09.658 - PubMed
  39. Sato Y, Tanaka T, Koseki K, Okuno T, Koike H, Sato K, et al. Comparison Between Quantitative Flow Ratio and Fractional Flow Reserve in Intermediate Coronary Stenosis. Journal of the American College of Cardiology Conference: 67th Annual Scientific Session of the American College of Cardiology, 10–12 March 2018, Orlando, FL, USA. https://doi.org/10.1016/S0735-1097(18)31722-4 - PubMed
  40. Smit JM, Koning G, van Rosendael AR, El Mahdiui M, Mertens BJ, Schalij MJ, et al. Referral of patients for fractional flow reserve using quantitative flow ratio. Eur Heart J Cardiovasc Imaging 2019;20:1231–8. https://doi.org/10.1093/ehjci/jey187 - PubMed
  41. Spitaleri G, Tebaldi M, Biscaglia S, Westra J, Brugaletta S, Erriquez A, et al. Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization in patients with ST-segment-elevation myocardial infarction and multivessel disease. Circ Cardiovasc Interv 2018;11:e006023. https://doi.org/10.1161/CIRCINTERVENTIONS.117.006023 - PubMed
  42. Stähli BE, Erbay A, Steiner J, Klotsche J, Mochmann HC, Skurk C, et al. Comparison of resting distal to aortic coronary pressure with angiography-based quantitative flow ratio. Int J Cardiol 2019;279:12–17. https://doi.org/10.1016/j.ijcard.2018.11.093 - PubMed
  43. Ties D, van Dijk R, Pundziute G, Lipsic E, Vonck TE, van den Heuvel AFM, et al. Computational quantitative flow ratio to assess functional severity of coronary artery stenosis. Int J Cardiol 2018;271:36–41. https://doi.org/10.1016/j.ijcard.2018.05.002 - PubMed
  44. Toi S, Iijima R, Hara H, Nakamura M. Usefulness of contrast FFR and Quantitative Flow Ratio(QFR) in intermediate coronary artery stenosis. Eur Heart J 2018;39(Suppl.):759–60. https://doi.org/10.1093/eurheartj/ehy563.P3653 - PubMed
  45. Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv 2014;7:768–77. https://doi.org/10.1016/j.jcin.2014.03.004 - PubMed
  46. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv 2016;9:2024–35. https://doi.org/10.1016/j.jcin.2016.07.013 - PubMed
  47. Van Diemen PAA, Driessen RS, Kooistra RA, Stuijfzand WJ, Raijmakers PG, Schumacher SP, et al. A comparison between the diagnostic performance of quantitative flow ratio and non-invasive imaging modalities for diagnosing myocardial ischemia defined by FFR, a PACIFIC-trial interim analysis. Eur Heart J 2019;40(Suppl.):716. https://doi.org/10.1093/eurheartj/ehz748.0038 - PubMed
  48. van Rosendael AR, Koning G, Dimitriu-Leen AC, Smit JM, Montero-Cabezas JM, van der Kley F, et al. Accuracy and reproducibility of fast fractional flow reserve computation from invasive coronary angiography. Int J Cardiovasc Imaging 2017;33:1305–12. https://doi.org/10.1007/s10554-017-1190-3 - PubMed
  49. Watarai M, Otsuka M, Yazaki K, Inagaki Y, Kahata M, Kumagai A, et al. Applicability of quantitative flow ratio for rapid evaluation of intermediate coronary stenosis: comparison with instantaneous wave-free ratio in clinical practice. Int J Cardiovasc Imaging 2019;35:1963–9. https://doi.org/10.1007/s10554-019-01656-z - PubMed
  50. Westra J, Andersen BK, Campo G, Matsuo H, Koltowski L, Eftekhari A, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared with pressure-derived fractional flow reserve: the FAVOR II Europe–Japan study. J Am Heart Assoc 2018;7:e009603. https://doi.org/10.1161/JAHA.118.009603 - PubMed
  51. Westra J, Tu S, Winther S, Nissen L, Vestergaard MB, Andersen BK, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II Study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging 2018;11:e007107. https://doi.org/10.1161/CIRCIMAGING.117.007107 - PubMed
  52. Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol 2017;70:3077–87. https://doi.org/10.1016/j.jacc.2017.10.035 - PubMed
  53. Yazaki K, Otsuka M, Kataoka S, Kahata M, Kumagai A, Inoue K, et al. Applicability of 3-dimensional quantitative coronary angiography-derived computed fractional flow reserve for intermediate coronary stenosis. Circ J 2017;81:988–92. https://doi.org/10.1253/circj.CJ-16-1261 - PubMed
  54. Ziubryte G, Jarusevicius G, Unikas R. Agreement between Quantitative Flow Ratio and FFR in Assessment of Functional Significance of Intermediate Coronary Artery Stenosis. Paper presented at EuroPCR 2019, 21–24 May 2019, Paris, France. - PubMed
  55. Legutko J, Kleczynski P, Dziewierz A, Rzeszutko L, Bartus S, Bagienski M, et al. Correlation between quantitative flow ratio (QFR) and fractional flow reserve (FFR). Eur Heart J 2017;38(Suppl.):481–2. https://doi.org/10.1093/eurheartj/ehx502.P2378 - PubMed
  56. Masdjedi K, van Zandvoort LJC, Balbi MM, Gijsen FJH, Ligthart JMR, Rutten MCM, et al. Validation of 3-dimensional quantitative coronary angiography based software to calculate fractional flow reserve: fast assessment of stenosis severity (FAST)-study. EuroIntervention 2020;16:591–9 https://doi.org/10.4244/EIJ-D-19-00466 - PubMed
  57. Mejia-Renteria H, Lee JM, Lauri F, van der Hoeven NW, de Waard GA, Macaya F, et al. Influence of microcirculatory dysfunction on angiography-based functional assessment of coronary stenoses. JACC Cardiovasc Interv 2018;11:741–53. https://doi.org/10.1016/j.jcin.2018.02.014 - PubMed
  58. Smit JM, El Mahdiui M, van Rosendael AR, Jukema JW, Koning G, Reiber JHC, et al. Comparison of diagnostic performance of quantitative flow ratio in patients with versus without diabetes mellitus. Am J Cardiol 2019;123:1722–8. https://doi.org/10.1016/j.amjcard.2019.02.035 - PubMed
  59. Kappetein AP, Feldman TE, Mack MJ, Morice MC, Holmes DR, Ståhle E, et al. Comparison of coronary bypass surgery with drug-eluting stenting for the treatment of left main and/or three-vessel disease: 3-year follow-up of the SYNTAX trial. Eur Heart J 2011;32:2125–34. https://doi.org/10.1093/eurheartj/ehr213 - PubMed
  60. Erbay A, Steiner J, Lauten A, Landmesser U, Leistner DM, Stahli BE. Assessment of intermediate coronary lesions by fractional flow reserve and quantitative flow ratio in patients with small-vessel disease. Catheter Cardiovasc Interv 2020;96:743–51. https://doi.org/10.1002/ccd.28531 - PubMed
  61. Kołtowski L, Maksym J, Zaleska M, Tomaniak M, Puchta D, Opolski G, et al. Diagnostic accuracy of quantitative flow ratio – a wire-free fractional flow reserve derived from diagnostic coronary angiography. Circulation 2017;136:A20077. - PubMed
  62. Ding D, Yang J, Westra J, Chen Y, Chang Y, Sejr-Hansen M, et al. Accuracy of 3-dimensional and 2-dimensional quantitative coronary angiography for predicting physiological significance of coronary stenosis: a FAVOR II substudy. Cardiovasc Diagn Ther 2019;9:481–91. https://doi.org/10.21037/cdt.2019.09.07 - PubMed
  63. Kim HY, Lim HS, Doh JH, Nam CW, Shin ES, Koo BK, et al. Physiological severity of coronary artery stenosis depends on the amount of myocardial mass subtended by the coronary artery. JACC Cardiovasc Interv 2016;9:1548–60. https://doi.org/10.1016/j.jcin.2016.04.008 - PubMed
  64. Mejia-Renteria H, Lauri F, Lee JM, Van Der Hoeven N, De Waard G, De Hoyos A, et al. Implementation of computational fluid dynamics increases the diagnostic performance of angiography-derived indices of stenosis severity. J Am Coll Cardiol 2017;70(Suppl.):B74–5. https://doi.org/10.1016/j.jacc.2017.09.242 - PubMed
  65. Sejr-Hansen M, Westra J, Winther S, Tu S, Nissen L, Gormsen L, et al. Comparison of quantitative flow ratio and fractional flow reserve with myocardial perfusion scintigraphy and cardiovascular magnetic resonance as reference standard. A Dan-NICAD substudy. Int J Cardiovasc Imaging 2020;36:395–402. https://doi.org/10.1007/s10554-019-01737-z - PubMed
  66. Sabaté M, Brugaletta S, Cequier A, Iñiguez A, Serra A, Jiménez-Quevedo P, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. Lancet 2016;387:357–66. https://doi.org/10.1016/S0140-6736(15)00548-6 - PubMed
  67. van Diemen P, Driessen R, Stuijfzand W, Schumacher S, Bom M, Everaars H, et al. TCT-112 comparison between the diagnostic performance of quantitative flow ratio and myocardial perfusion imaging for detecting myocardial ischemia. J Am Coll Cardiol 2019;74(Suppl.):B112. https://doi.org/10.1016/j.jacc.2019.08.158 - PubMed
  68. Bertoldi EG, Stella SF, Rohde LE, Polanczyk CA. Long-term cost-effectiveness of diagnostic tests for assessing stable chest pain: modeled analysis of anatomical and functional strategies. Clin Cardiol 2016;39:249–56. https://doi.org/10.1002/clc.22532 - PubMed
  69. Amemiya S, Takao H. Computed tomographic coronary angiography for diagnosing stable coronary artery disease: a cost-utility and cost-effectiveness analysis. Circ J 2009;73:1263–70. https://doi.org/10.1253/circj.CJ-08-1186 - PubMed
  70. Min JK, Gilmore A, Jones EC, Berman DS, Stuijfzand WJ, Shaw LJ, et al. Cost-effectiveness of diagnostic evaluation strategies for individuals with stable chest pain syndrome and suspected coronary artery disease. Clin Imaging 2017;43:97–105. https://doi.org/10.1016/j.clinimag.2017.01.015 - PubMed
  71. Burgers LT, Redekop WK, Al MJ, Lhachimi SK, Armstrong N, Walker S, et al. Cost-effectiveness analysis of new generation coronary CT scanners for difficult-to-image patients. Eur J Health Econ 2017;18:731–42. https://doi.org/10.1007/s10198-016-0824-z - PubMed
  72. Pletscher M, Walker S, Moschetti K, Pinget C, Wasserfallen JB, Greenwood JP, et al. Cost-effectiveness of functional cardiac imaging in the diagnostic work-up of coronary heart disease. Eur Heart J Qual Care Clin Outcomes 2016;2:201–7. https://doi.org/10.1093/ehjqcco/qcw008 - PubMed
  73. Lee SP, Jang EJ, Kim YJ, Cha MJ, Park SY, Song HJ, et al. Cost-effectiveness of coronary CT angiography in patients with chest pain: comparison with myocardial single photon emission tomography. J Cardiovasc Comput Tomogr 2015;9:428–37. https://doi.org/10.1016/j.jcct.2015.02.008 - PubMed
  74. Genders TS, Petersen SE, Pugliese F, Dastidar AG, Fleischmann KE, Nieman K, Hunink MG. The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis. Ann Intern Med 2015;162:474–84. https://doi.org/10.7326/M14-0027 - PubMed
  75. Goeree R, Blackhouse G, Bowen JM, O’Reilly D, Sutherland S, Hopkins R, et al. Cost-effectiveness of 64-slice CT angiography compared with conventional coronary angiography based on a coverage with evidence development study in Ontario. Expert Rev Pharmacoecon Outcomes Res 2013;13:675–90. https://doi.org/10.1586/14737167.2013.838079 - PubMed
  76. Espinosa G, Annapragada A. Cost-effectiveness of a novel blood-pool contrast agent in the setting of chest pain evaluation in an emergency department. AJR Am J Roentgenol 2013;201:710–19. https://doi.org/10.2214/AJR.12.9946 - PubMed
  77. Walker S, Girardin F, McKenna C, Ball SG, Nixon J, Plein S, et al. Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart 2013;99:873–81. https://doi.org/10.1136/heartjnl-2013-303624 - PubMed
  78. Boldt J, Leber AW, Bonaventura K, Sohns C, Stula M, Huppertz A, et al. Cost-effectiveness of cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary artery disease in Germany. J Cardiovasc Magn Reson 2013;15:30. https://doi.org/10.1186/1532-429X-15-30 - PubMed
  79. Westwood M, Al M, Burgers L, Redekop K, Lhachimi S, Armstrong N, et al. A systematic review and economic evaluation of new-generation computed tomography scanners for imaging in coronary artery disease and congenital heart disease: Somatom Definition Flash, Aquilion ONE, Brilliance iCT and Discovery CT750 HD. Health Technol Assess 2013;17(9). https://doi.org/10.3310/hta17090 - PubMed
  80. Priest VL, Scuffham PA, Hachamovitch R, Marwick TH. Cost-effectiveness of coronary computed tomography and cardiac stress imaging in the emergency department: a decision analytic model comparing diagnostic strategies for chest pain in patients at low risk of acute coronary syndromes. JACC Cardiovasc Imaging 2011;4:549–56. https://doi.org/10.1016/j.jcmg.2011.03.008 - PubMed
  81. Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology 2010;254:801–8. https://doi.org/10.1148/radiol.09090349 - PubMed
  82. Ladapo JA, Jaffer FA, Hoffmann U, Thomson CC, Bamberg F, Dec W, et al. Clinical outcomes and cost-effectiveness of coronary computed tomography angiography in the evaluation of patients with chest pain. J Am Coll Cardiol 2009;54:2409–22. https://doi.org/10.1016/j.jacc.2009.10.012 - PubMed
  83. Genders TS, Meijboom WB, Meijs MF, Schuijf JD, Mollet NR, Weustink AC, et al. CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty. Radiology 2009;253:734–44. https://doi.org/10.1148/radiol.2533090507 - PubMed
  84. Kreisz FP, Merlin T, Moss J, Atherton J, Hiller JE, Gericke CA. The pre-test risk stratified cost-effectiveness of 64-slice computed tomography coronary angiography in the detection of significant obstructive coronary artery disease in patients otherwise referred to invasive coronary angiography. Heart Lung Circ 2009;18:200–7. https://doi.org/10.1016/j.hlc.2008.10.013 - PubMed
  85. Hernández R, Vale L. The value of myocardial perfusion scintigraphy in the diagnosis and management of angina and myocardial infarction: a probabilistic economic analysis. Med Decis Making 2007;27:772–88. https://doi.org/10.1177/0272989X07306111 - PubMed
  86. Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N, et al. Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess 2004;8(30). https://doi.org/10.3310/hta8300 - PubMed
  87. Fearon WF, Yeung AC, Lee DP, Yock PG, Heidenreich PA. Cost-effectiveness of measuring fractional flow reserve to guide coronary interventions. Am Heart J 2003;145:882–7. https://doi.org/10.1016/S0002-8703(03)00072-3 - PubMed
  88. Hayashino Y, Nagata-Kobayashi S, Morimoto T, Maeda K, Shimbo T, Fukui T. Cost-effectiveness of screening for coronary artery disease in asymptomatic patients with type 2 diabetes and additional atherogenic risk factors. J Gen Intern Med 2004;19:1181–91. https://doi.org/10.1111/j.1525-1497.2004.40012.x - PubMed
  89. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012;379:453–60. https://doi.org/10.1016/S0140-6736(11)61335-4 - PubMed
  90. Briggs A, Mihaylova B, Sculpher M, Hall A, Wolstenholme J, Simoons M, et al. Cost effectiveness of perindopril in reducing cardiovascular events in patients with stable coronary artery disease using data from the EUROPA study. Heart 2007;93:1081–6. https://doi.org/10.1136/hrt.2005.086728 - PubMed
  91. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007;356:1503–16. https://doi.org/10.1056/NEJMoa070829 - PubMed
  92. National Institute for Health and Care Excellence (NICE). Guide to the Methods of Technology Appraisal. London: NICE; 2013. - PubMed
  93. Andrew B, Sculpher M, Claxton K. Decision Modelling for Health Economic Evaluation. Oxford: Oxford University Press; 2006. - PubMed
  94. National Institute for Health and Care Excellence. Chest Pain Overview. 2020. URL: http://pathways.nice.org.uk/pathways/chest-pain (accessed 6 April 2020). - PubMed
  95. Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 2020;382:1395–407. https://doi.org/10.1056/NEJMoa1915922 - PubMed
  96. Mori Brooks M, Barsness G, Chaitman B, Chung S-C, Faxon D, Feit F, et al. Baseline characteristics of patients with diabetes and coronary artery disease enrolled in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Am Heart J 2008;156:528–36, 536.e1–5. https://doi.org/10.1016/j.ahj.2008.05.015 - PubMed
  97. Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet 2018;391:31–40. https://doi.org/10.1016/S0140-6736(17)32714-9 - PubMed
  98. Ludman PF. BCIS National Audit. Adult Interventional Procedures 1st April 2018 to 31st March 2019. Lutterworth; British Cardiovascular Intervention Society: 2020. - PubMed
  99. Ludman PF. BCIS Audit Returns Adult Interventional Procedures 2017–18. Lutterworth; British Cardiovascular Intervention Society: 2019. - PubMed
  100. Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P, Min JK. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J 2017;38:991–8. https://doi.org/10.1093/eurheartj/ehw095 - PubMed
  101. Curzen N, Rana O, Nicholas Z, Golledge P, Zaman A, Oldroyd K, et al. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain? The RIPCORD study. Circ Cardiovasc Interv 2014;7:248–55. https://doi.org/10.1161/CIRCINTERVENTIONS.113.000978 - PubMed
  102. National Institute for Cardiovascular Outcomes Research. National Adult Cardiac Surgery Audit 2019. Summary Report (2015/16–2017/18 Data). London: Healthcare Quality Improvement Programme; 2019. - PubMed
  103. National Institute for Cardiovascular Outcomes Research. 2019 NCAP Annual Report. Improving Cardiovascular Outcomes: Timely, Specialist, Evidence-Based Care. London: Healthcare Quality Improvement Partnership; 2019. - PubMed
  104. Johnson NP, Tóth GG, Lai D, Zhu H, Açar G, Agostoni P, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol 2014;64:1641–54. https://doi.org/10.1016/j.jacc.2014.07.973 - PubMed
  105. Bangalore S, Toklu B, Amoroso N, Fusaro M, Kumar S, Hannan EL, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ 2013;347:f6625. https://doi.org/10.1136/bmj.f6625 - PubMed
  106. Pfisterer M. Trial of invasive versus medical therapy in the elderly (TIME). Heart Drug 2001;1:144–47. https://doi.org/10.1159/000048951 - PubMed
  107. Hueb W, Lopes NH, Gersh BJ, Soares P, Machado LA, Jatene FB, et al. Five-year follow-up of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 2007;115:1082–9. https://doi.org/10.1161/CIRCULATIONAHA.106.625475 - PubMed
  108. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009;360:2503–15. https://doi.org/10.1056/NEJMoa0805796 - PubMed
  109. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med 2014;371:1208–17. https://doi.org/10.1056/NEJMoa1408758 - PubMed
  110. Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 2001;103:2928–34. https://doi.org/10.1161/01.cir.103.24.2928 - PubMed
  111. Nishigaki K, Yamazaki T, Kitabatake A, Yamaguchi T, Kanmatsuse K, Kodama I, et al. Percutaneous coronary intervention plus medical therapy reduces the incidence of acute coronary syndrome more effectively than initial medical therapy only among patients with low-risk coronary artery disease a randomized, comparative, multicenter study. JACC Cardiovasc Interv 2008;1:469–79. https://doi.org/10.1016/j.jcin.2008.08.002 - PubMed
  112. Schömig A, Mehilli J, de Waha A, Seyfarth M, Pache J, Kastrati A. A meta-analysis of 17 randomized trials of a percutaneous coronary intervention-based strategy in patients with stable coronary artery disease. J Am Coll Cardiol 2008;52:894–904. https://doi.org/10.1016/j.jacc.2008.05.051 - PubMed
  113. Jeremias A, Kaul S, Rosengart TK, Gruberg L, Brown DL. The impact of revascularization on mortality in patients with nonacute coronary artery disease. Am J Med 2009;122:152–61. https://doi.org/10.1016/j.amjmed.2008.07.027 - PubMed
  114. Trikalinos TA, Alsheikh-Ali AA, Tatsioni A, Nallamothu BK, Kent DM. Percutaneous coronary interventions for non-acute coronary artery disease: a quantitative 20-year synopsis and a network meta-analysis. Lancet 2009;373:911–18. https://doi.org/10.1016/S0140-6736(09)60319-6 - PubMed
  115. Thomas S, Gokhale R, Boden WE, Devereaux PJ. A meta-analysis of randomized controlled trials comparing percutaneous coronary intervention with medical therapy in stable angina pectoris. Can J Cardiol 2013;29:472–82. https://doi.org/10.1016/j.cjca.2012.07.010 - PubMed
  116. Chacko L, P Howard J, Rajkumar C, Nowbar AN, Kane C, Mahdi D, et al. Effects of percutaneous coronary intervention on death and myocardial infarction stratified by stable and unstable coronary artery disease: a meta-analysis of randomized controlled trials. Circ Cardiovasc Qual Outcomes 2020;13:e006363. https://doi.org/10.1161/CIRCOUTCOMES.119.006363 - PubMed
  117. Windecker S, Stortecky S, Stefanini GG, da Costa BR, daCosta BR, Rutjes AW, et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ 2014;348:g3859. https://doi.org/10.1136/bmj.g3859 - PubMed
  118. Stergiopoulos K, Boden WE, Hartigan P, Möbius-Winkler S, Hambrecht R, Hueb W, et al. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern Med 2014;174:232–40. https://doi.org/10.1001/jamainternmed.2013.12855 - PubMed
  119. Pursnani S, Korley F, Gopaul R, Kanade P, Chandra N, Shaw RE, Bangalore S. Percutaneous coronary intervention versus optimal medical therapy in stable coronary artery disease: a systematic review and meta-analysis of randomized clinical trials. Circ Cardiovasc Interv 2012;5:476–90. https://doi.org/10.1161/CIRCINTERVENTIONS.112.970954 - PubMed
  120. Office for National Statistics. National Life Tables: England and Wales. 2019. URL: www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandandwalesreferencetables (accessed February 2020). - PubMed
  121. Office for National Statistics. Mortality Statistics – Underlying Cause, Sex and Age. URL: www.nomisweb.co.uk/query/construct/summary.asp?mode=construct%26version=0%26dataset=161 (accessed February 2020). - PubMed
  122. McGeoch RJ, Oldroyd KG. Pharmacological options for inducing maximal hyperaemia during studies of coronary physiology. Catheter Cardiovasc Interv 2008;71:198–204. https://doi.org/10.1002/ccd.21307 - PubMed
  123. Spicuzza L, Di Maria G, Polosa R. Adenosine in the airways: implications and applications. Eur J Pharmacol 2006;533:77–88. https://doi.org/10.1016/j.ejphar.2005.12.056 - PubMed
  124. Schlundt C, Bietau C, Klinghammer L, Wiedemann R, Rittger H, Ludwig J, Achenbach S. Comparison of intracoronary versus intravenous administration of adenosine for measurement of coronary fractional flow reserve. Circ Cardiovasc Interv 2015;8:e001781. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001781 - PubMed
  125. Rudzinski W, Waller AH, Rusovici A, Dehnee A, Nasur A, Benz M, et al. Comparison of efficacy and safety of intracoronary sodium nitroprusside and intravenous adenosine for assessing fractional flow reserve. Catheter Cardiovasc Interv 2013;81:540–4. https://doi.org/10.1002/ccd.24652 - PubMed
  126. Bagust A, Grayson AD, Palmer ND, Perry RA, Walley T. Cost effectiveness of drug eluting coronary artery stenting in a UK setting: cost–utility study. Heart 2006;92:68–74. https://doi.org/10.1136/hrt.2004.053850 - PubMed
  127. Favarato ME, Hueb W, Boden WE, Lopes N, Nogueira CR, Takiuti M, et al. Quality of life in patients with symptomatic multivessel coronary artery disease: a comparative post hoc analyses of medical, angioplasty or surgical strategies – MASS II trial. Int J Cardiol 2007;116:364–70. https://doi.org/10.1016/j.ijcard.2006.06.001 - PubMed
  128. Weintraub WS, Boden WE, Zhang Z, Kolm P, Zhang Z, Spertus JA, et al. Cost-effectiveness of percutaneous coronary intervention in optimally treated stable coronary patients. Circ Cardiovasc Qual Outcomes 2008;1:12–20. https://doi.org/10.1161/CIRCOUTCOMES.108.798462 - PubMed
  129. Brooks MM, Chung SC, Helmy T, Hillegass WB, Escobedo J, Melsop KA, et al. Health status after treatment for coronary artery disease and type 2 diabetes mellitus in the Bypass Angioplasty Revascularization Investigation 2 Diabetes trial. Circulation 2010;122:1690–9. https://doi.org/10.1161/CIRCULATIONAHA.109.912642 - PubMed
  130. Nishi T, Piroth Z, De Bruyne B, Jagic N, Möbius-Winkler S, Kobayashi Y, et al. Fractional flow reserve and quality-of-life improvement after percutaneous coronary intervention in patients with stable coronary artery disease. Circulation 2018;138:1797–804. https://doi.org/10.1161/CIRCULATIONAHA.118.035263 - PubMed
  131. Spertus JA, Jones PG, Maron DJ, O’Brien SM, Reynolds HR, Rosenberg Y, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med 2020;382:1408–19. https://doi.org/10.1056/NEJMoa1916370 - PubMed
  132. Takousi MG, Schmeer S, Manaras I, Olympios CD, Makos G, Troop NA. Health-related quality of life after coronary revascularization: a systematic review with meta-analysis. Hellenic J Cardiol 2016;57:223–37. https://doi.org/10.1016/j.hjc.2016.05.003 - PubMed
  133. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010;55:2816–21. https://doi.org/10.1016/j.jacc.2009.11.096 - PubMed
  134. Ara R, Brazier JE. Populating an economic model with health state utility values: moving toward better practice. Value Health 2010;13:509–18. https://doi.org/10.1111/j.1524-4733.2010.00700.x - PubMed
  135. Sullivan PW, Slejko JF, Sculpher MJ, Ghushchyan V. Catalogue of EQ-5D scores for the United Kingdom. Med Decis Making 2011;31:800–4. https://doi.org/10.1177/0272989X11401031 - PubMed
  136. Exchangerates.org.uk. Euro (EUR) to British Pound (GBP) Exchange Rate History. URL: www.exchangerates.org.uk/EUR-GBP-exchange-rate-history.html (accessed February 2020). - PubMed
  137. Curtis L, Burns A. Unit Costs of Health and Social Care 2019. Canterbury: Personal Social Services Research Unit, University of Kent; 2020. - PubMed
  138. Department of Health and Social Care. National Schedule of NHS Costs 2017/18. 2020. URL: https://webarchive.nationalarchives.gov.uk/ukgwa/20200501111106/https://improvement.nhs.uk/resources/reference-costs/ (accessed February 2020). - PubMed
  139. National Institute for Cardiovascular Outcomes Research. National Audit for Percutaneous Coronary Intervention 2019 Summary Report (2017/18 Data). London: Healthcare Quality Improvement Programme; 2019. - PubMed
  140. National Institute for Health and Care Excellence (NICE). Stable Angina: Management. London: NICE; 2016. - PubMed
  141. BMJ Group and Pharmaceutical Press. British National Formulary (online). London: BMJ Group, Pharmaceutical Press, and RCPCH Publications. URL: https://bnf.nice.org.uk/ (accessed February 2020). - PubMed
  142. Christiansen EH. Functional Assessment by Virtual Online Reconstruction. The FAVOR III Europe Japan Study (FAVOR III EJ). 2018. URL: www.clinicaltrials.gov/ct2/show/NCT03729739 (accessed June 2021). - PubMed
  143. Bo X. The FAVOR III China Study (FAVOR III). 2018. URL: https://clinicaltrials.gov/ct2/show/NCT03656848 (accessed June 2021). - PubMed
  144. Cliff Li KF, Chuang TH, Ong PJL. TCTAP A-131 First report on the use and repeatability of quantitative flow ratio in a South East Asian population. J Am Coll Cardiol 2019;73(Suppl.):S68–9. https://doi.org/10.1016/j.jacc.2019.03.177 - PubMed
  145. Cortes Villar C, Vera Vera S, Goncalves LR, Ramos B, Serrador A, Gutierrez H, et al. Functional evolution of non-culprit lesions in acute myocardial infarction. A quantitative flow ratio study. Eur Heart J 2018;39(Suppl.):952. https://doi.org/10.1093/eurheartj/ehy563.P4625 - PubMed
  146. Cortes C, Vera S, Catala P, Gutierrez H, Arnold R, Hinojosa W, et al. Quantitative flow ratio in myocardial infarction for the evaluation of non-infart related arteries: the QIMERA pilot study. REC Interv Cardiol 2019;1:13–20. - PubMed
  147. Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Tanaka A, et al. The correlation between quantitative flow ratio (QFR) and fractional flow reserve (FFR). J Am Coll Cardiol 2016;68(Suppl. 1):B213–14. https://doi.org/10.1016/j.jacc.2016.09.666 - PubMed
  148. Emori H, Kubo T, Tanigaki T, Kawase Y, Shiono Y, Shimamura K, et al. TCT-328 diagnostic performance of quantitative flow ratio from angiography versus fractional flow reserve from computed tomography. J Am Coll Cardiol 2019;74(Suppl.):B326. https://doi.org/10.1016/j.jacc.2019.08.408 - PubMed
  149. Tanigaki T, Emori H, Kawase Y, Kubo T, Omori H, Shiono Y, et al. QFR versus FFR derived from computed tomography for functional assessment of coronary artery stenosis. JACC Cardiovasc Interv 2019;12:2050–9. https://doi.org/10.1016/j.jcin.2019.06.043 - PubMed
  150. Daemen J. Fast Assessment of STenosis Severity – FASTII Study. URL: https://clinicaltrials.gov/ct2/show/NCT03791320 (accessed June 2021). - PubMed
  151. Chang Y, Chen L, Westra J, Sun Z, Guan C, Zhang Y, et al. Reproducibility of quantitative flow ratio: an inter-core laboratory variability study. Cardiol J 2018;20:20. - PubMed
  152. Fuwai Hospital. The FAVOR II China Study. 2017. URL: https://clinicaltrials.gov/ct2/show/NCT03191708 (accessed June 2021). - PubMed
  153. Zhang Y, Zhang S, Westra J, Ding D, Zhao Q, Yang J, et al. Automatic coronary blood flow computation: validation in quantitative flow ratio from coronary angiography. Int J Cardiovasc Imaging 2019;35:587–95. https://doi.org/10.1007/s10554-018-1506-y - PubMed
  154. Holm NR. Diagnostic Accuracy of On-line Quantitative Flow Ratio (QFR). FAVOR II Europe–Japan (FAVOR II EJ). 2016. URL: https://clinicaltrials.gov/ct2/show/NCT02959814 (accessed June 2021). - PubMed
  155. Tu S, Westra J, Yang J, Birgelen Cv, Ferrara A, Pellicano M, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary X-ray angiography in the international multicenter FAVOR (Functional Assessment by Various FlOw Reconstructions) pilot study. J Am Coll Cardiol Intv 2016;9:2024–35. - PubMed
  156. Hamaya R, Hoshino M, Kanno Y, Yamaguchi M, Fukuda T, Ohya H, et al. Prognostic implication of three-vessel three-dimensional quantitative coronary angiography-based contrast-flow quantitative flow ratio in patients with stable coronary artery disease. Eur Heart J 2018;39(Suppl.):943. https://doi.org/10.1093/eurheartj/ehy563.P4596 - PubMed
  157. Choi KH. Clinical Relevance of Functional Angiography for Non-culprit Stenosis in Patients with Acute Myocardial Infarction. Paper presented at EuroPCR, 21–4 May 2019, Paris, France. - PubMed
  158. Palma Dallan LA, Pizzato P, Rodrigues Pereira GT, Vergara-Martel A, Zago E, Zimin V, et al. Application of virtual fractional flow reserve analysis in real world invasive procedures: insights from ILUMIEN-I Trial. JACC Cardiovasc Interv 2019;12(Suppl.):S1–2. https://doi.org/10.1016/j.jcin.2019.01.005 - PubMed
  159. Hideo-Kajita A, Ozaki Y, Bezerra C, Dan K, Melaku GD, Waksman R, et al. Quantitative flow ratio (QFR) inter- and intra-observer reproducibility assessed at baseline and after 1 week. JACC Cardiovasc Interv 2019;12(Suppl.):S32. https://doi.org/10.1016/j.jcin.2019.01.118 - PubMed
  160. Sugiyama T, Kanno Y, Hamaya R, Hoshino M, Usui E, Kanaji Y, et al. Determinants of visual-functional mismatches as assessed by coronary angiography and 3-D angiography-based quantitative flow ratio. Eur Heart J 2019;40(Suppl. 1):2185. https://doi.org/10.1093/eurheartj/ehz745.0439 - PubMed
  161. Kanno Y, Hoshio M, Sugiyama T, Kanaji Y, Yamaguchi M, Hada M, et al. Hybrid QFR-FFR decision making strategy for revascularization. Eur Heart J 2019;40(Suppl. 1):1656. https://doi.org/10.1093/eurheartj/ehz748.1022 - PubMed
  162. Kanno Y, Yonetsu T, Kanaji Y, Usui E, Hoshino M, Hada M, et al. Accuracy of Quantitative Flow Ratio Obtained from 3D Computational Quantitative Coronary Angiography in Comparison with Invasive Fractional Flow Reserve as a Reference. Journal of the American College of Cardiology Conference: 67th Annual Scientific Session of the American College of Cardiology, 10–12 March 2018, Orlando, FL, USA. https://doi.org/10.1016/S0735-1097(18)31529-8 - PubMed
  163. Zaleska M, Koltowski L, Maksym J, Chabior AK, Pohadajło A, Soliński M, et al. Quantitative flow ratio and fractional flow reserve mismatch – clinical and biochemical predictors of measurement discrepancy. Postepy Kardiol Interwencyjnej 2019;15:301–7. https://doi.org/10.5114/aic.2019.87883 - PubMed
  164. Zaleska M, Koltowski L, Maksym J, Tomaniak M, Chabior A, Pohadajlo A, et al. Influence of diabetes mellitus and chronic kidney disease on diagnostic accuracy of quantitative flow ratio (QFR). J Am Coll Cardiol 2018;72:B248. https://doi.org/10.1016/j.jacc.2018.08.1821 - PubMed
  165. Mehta O, Lim R, Hay M, Ildayhid A, Zhang M, Cameron J, et al. Diagnostic accuracy of quantitative flow ratio (QFR) compared with instantaneous flow wave free ratio (iFR) and DILEMMA score to predict fractional flow reserve (FFR). Heart Lung Circ 2019;28(Suppl. 4):S394. https://doi.org/10.1016/j.hlc.2019.06.607 - PubMed
  166. Liontou C, Mejia-Renteria H, Goto S, Lee H, Lauri F, Macaya F, et al. Functional assessment of in-stent restenosis with quantitative flow ratio (QFR). A comparison with de novo coronary stenoses. J Am Coll Cardiol 2018;72(Suppl. B):B18. https://doi.org/10.1016/j.jacc.2018.08.1122 - PubMed
  167. Mejia-Renteria H, Lauri F, Lee JM, Van Der Hoeven N, De Waard G, De Hoyos A, et al. Influence of microcirculatory resistance on the assessment of coronary stenosis severity with quantitative flow ratio (QFR): results of an international multicentre study. J Am Coll Cardiol 2017;70(Suppl.):B30–1. https://doi.org/10.1016/j.jacc.2017.09.121 - PubMed
  168. Mejia-Renteria H, Lauri F, Macaya F, Liontou C, Lee JM, van der Hoeven N, et al. Evaluation of the diagnostic performance of the quantitative flow ratio (QFR) according to the inter-individual variations in the adenosine response during fractional flow reserve (FFR) measurement. J Am Coll Cardiol 2018;72(Suppl.):B232 https://doi.org/10.1016/j.jacc.2018.08.1773 - PubMed
  169. Mejia-Renteria H, Lauri F, Macaya F, Ryan N, Nombela-Franco L, Gonzalo N, et al. Diagnostic performance of the novel quantitative flow ratio to predict significant coronary stenoses. Eur Heart J 2017;38(Suppl. 1):482. https://doi.org/10.1093/eurheartj/ehx502.P2380 - PubMed
  170. Macaya F, Lauri F, Mejia-Renteria H, Pareek N, Goto S, Liontou C, et al. Angiography-derived functional assessment of non-culprit stenoses with quantitative flow ratio at the time of ST-elevation myocardial infarction. J Am Coll Cardiol 2018;72(Suppl.):B126. https://doi.org/10.1016/j.jacc.2018.08.1446 - PubMed
  171. Lauri FM, Mejia-Renteria H, Lee JM, Van Der Hoeven N, De Waard G, MacAya F, et al. Improving the diagnostic accuracy of quantitative flow ratio (QFR): a proposal of QFR-fractional flow reserve (FFR) hybrid approach. Eur Heart J 2018;39(Suppl. 1):1144. https://doi.org/10.1093/eurheartj/ehy566.P5511 - PubMed
  172. Smit J, Koning G, van Rosendael A, El Mahdiui M, Mertens B, Jukema J, et al. Referral of Patients for Fractional Flow Reserve Using Coronary Contrast-Flow Quantitative Flow Ratio. Journal of the American College of Cardiology Conference: 67th Annual Scientific Session of the American College of Cardiology, 10–12 March 2018, Orlando, FL, USA. https://doi.org/10.1016/S0735-1097(18)32118-1 - PubMed
  173. Smit JM, El Mahdiui M, van Rosendael AR, Jukema JW, Koning G, Reiber JH, et al. Diagnostic performance of quantitative flow ratio in diabetic and non-diabetic patients. Circulation 2018;138:A14594. - PubMed
  174. Smit JM, Koning G, van Rosendael AR, El Mahdiui M, Jukema JW, Reiber JHC, et al. Diagnostic performance of quantitative flow ratio in diabetic and non-diabetic patients. Eur Heart J 2018;39(Suppl. 1):446. - PubMed
  175. Erbay A, Steiner J, Lauten A, Landmesser U, Leistner D, Stahli BE. Assessment of intermediate coronary lesions by fractional flow reserve and quantitative flow ratio in patients with small-vessel disease. Eur Heart J 2018;39(Suppl. 1):948. https://doi.org/10.1093/eurheartj/ehy563.P4611 - PubMed
  176. Erbay A, Steiner J, Fröhlich G, Lauten A, Landmesser U, Leistner D, et al. Quantitative Flow Ratio in the Evaluation of Intermediate Coronary Lesions in Diabetic Versus Non-diabetic Patients. Paper presented at German Society of Cardiology, Mannheim, Germany. - PubMed
  177. Leistner DM, Erbay A, Steiner J, Lauten A, Landmesser U, Stahli B. Diagnostic performance of quantitative fow ratio in intermediate coronary artery lesions: a real-world single-centre experience. Kardiovask Medizin 2018;21:117. - PubMed
  178. Kobayashi Y, Fearon WF. Simultaneous anatomic and physiologic assessment of coronary artery disease with coronary angiography alone. JACC Cardiovasc Interv 2019;12:271–3. https://doi.org/10.1016/j.jcin.2018.10.032 - PubMed
  179. Asano T, Katagiri Y, Chang CC, Kogame N, Chichareon P, Takahashi K, et al. Angiography-derived fractional flow reserve in the SYNTAX II trial: diagnostic accuracy of QFR and clinical prognostic value of functional SYNTAX score derived from QFR. J Am Coll Cardiol 2018;72(Suppl.):B127. https://doi.org/10.1016/j.jacc.2018.08.1449 - PubMed
  180. Kogame N, Takahashi K, Tomaniak M, Chichareon P, Modolo R, Chang CC, et al. Clinical implication of quantitative flow ratio after percutaneous coronary intervention for 3-vessel disease. JACC Cardiovasc Interv 2019;12:2064–75. https://doi.org/10.1016/j.jcin.2019.08.009 - PubMed
  181. Kogame N, Takahashi K, Tomaniak M, Chichareon P, Modolo R, Katagiri Y, et al. TCT-111 clinical implication of quantitative flow ratio after percutaneous coronary intervention for three vessel disease. J Am Coll Cardiol 2019;74(Suppl.):B111. https://doi.org/10.1016/j.jacc.2019.08.157 - PubMed
  182. Westra JS, Andersen BK, Vestergaard MB, Winther S, Nissen L, Boetker HE, et al. Resting Pd/Pa and FFR discordance: effect on the diagnostic performance of quantitative flow ratio (QFR) with FFR as reference standard. Eur Heart J 2017;38(Suppl. 1):482. https://doi.org/10.1093/eurheartj/ehx502.P2381 - PubMed
  183. Westra J, Tu S, Nissen L, Winther S, Britt M, Andersen BK, et al. Physiological testing of coronary artery stenosis by computation of invasive coronary angiography. The wire-free functional imaging (WIFI-II) study. J Am Coll Cardiol 2016;68(Suppl.):B4–5. https://doi.org/10.1016/j.jacc.2016.09.887 - PubMed
  184. Andreasen LN, Andersen BK, Vestergaard MB, Tu S, Westra JS, Reiber JHC, et al. Feasibility and diagnostic precision of in-procedure computed FFR: the wire-free invasive functional imaging (WIFI) study. EuroIntervention 2016;France:176. - PubMed
  185. Holm NR. The Wire-free Invasive Functional Imaging (WIFI) Study. 2016. URL: https://clinicaltrials.gov/ct2/show/NCT02795585 (accessed June 2021). - PubMed
  186. Otsuka M, Goto M, Kataoka S, Kahata M, Kumagai A, Inoue K, et al. FFRQCA: FFR Computation Derived from 3-dimensional Quantitative Coronary Angiography. Paper presented at the CVIT meeting, Tokyo, Japan. - PubMed
  187. Hueb W, Lopes N, Gersh BJ, Soares PR, Ribeiro EE, Pereira AC, et al. Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 2010;122:949–57. https://doi.org/10.1161/CIRCULATIONAHA.109.911669 - PubMed
  188. Dagenais GR, Lu J, Faxon DP, Kent K, Lago RM, Lezama C, et al. Effects of optimal medical treatment with or without coronary revascularization on angina and subsequent revascularizations in patients with type 2 diabetes mellitus and stable ischemic heart disease. Circulation 2011;123:1492–500. https://doi.org/10.1161/CIRCULATIONAHA.110.978247 - PubMed
  189. Hochman JS. International Study Of Comparative Health Effectiveness With Medical And Invasive Approaches (ISCHEMIA): Primary report of the Clinical Outcomes. Paper presented at the American Heart Association, Philadelphia, PA, USA. - PubMed
  190. Spertus JA. International Study of Comparative Health Effectiveness with Medical and Invasive Approaches. Primary Report of Quality of Life Outcomes. Paper presented at the American Heart Association, Philadelphia, PA, USA. - PubMed

MeSH terms

Publication Types

Grant support