Display options
Share it on

Infect Immun. 2021 Nov 16;89(12):e0034821. doi: 10.1128/IAI.00348-21. Epub 2021 Sep 20.

Functional Properties of Oligomeric and Monomeric Forms of Helicobacter pylori VacA Toxin.

Infection and immunity

Georgia C Caso, Mark S McClain, Amanda L Erwin, Mandy D Truelock, Anne M Campbell, Catherine S Leasure, Marcus Nagel, Kevin L Schey, D Borden Lacy, Melanie D Ohi, Timothy L Cover

Affiliations

  1. Department of Medicine, Vanderbilt University School of Medicinegrid.471397.f, Nashville, Tennessee, USA.
  2. Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
  3. Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicinegrid.471397.f, Nashville, Tennessee, USA.
  4. Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicinegrid.471397.f, Nashville, Tennessee, USA.
  5. Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.

PMID: 34543122 PMCID: PMC8594603 DOI: 10.1128/IAI.00348-21

Abstract

Helicobacter pylori VacA is a secreted toxin that assembles into water-soluble oligomeric structures and forms anion-selective membrane channels. Acidification of purified VacA enhances its activity in cell culture assays. Sites of protomer-protomer contact within VacA oligomers have been identified by cryoelectron microscopy, and in the current study, we validated several of these interactions by chemical cross-linking and mass spectrometry. We then mutated amino acids at these contact sites and analyzed the effects of the alterations on VacA oligomerization and activity. VacA proteins with amino acid charge reversals at interprotomer contact sites retained the capacity to assemble into water-soluble oligomers and retained cell-vacuolating activity. Introduction of paired cysteine substitutions at these sites resulted in formation of disulfide bonds between adjacent protomers. Negative-stain electron microscopy and single-particle two-dimensional class analysis revealed that wild-type VacA oligomers disassemble when exposed to acidic pH, whereas the mutant proteins with paired cysteine substitutions retain an oligomeric state at acidic pH. Acid-activated wild-type VacA caused vacuolation of cultured cells, whereas acid-activated mutant proteins with paired cysteine substitutions lacked cell-vacuolating activity. Treatment of these mutant proteins with both low pH and a reducing agent resulted in VacA binding to cells, VacA internalization, and cell vacuolation. Internalization of a nonoligomerizing mutant form of VacA by host cells was detected without a requirement for acid activation. Collectively, these results enhance our understanding of the molecular interactions required for VacA oligomerization and support a model in which toxin activity depends on interactions of monomeric VacA with host cells.

Keywords: bacterial protein toxin; bacterial toxins; gastric cancer; membrane channel proteins; membrane channels; oligomerization; pore-forming proteins; pore-forming toxins

References

  1. Infect Immun. 2008 Jul;76(7):2843-51 - PubMed
  2. J Biol Chem. 1995 Jul 28;270(30):17771-7 - PubMed
  3. Cell Host Microbe. 2018 May 9;23(5):583-593.e8 - PubMed
  4. Mol Microbiol. 2000 Jul;37(2):433-42 - PubMed
  5. Biochemistry. 2010 Jul 13;49(27):5743-52 - PubMed
  6. Mol Microbiol. 1994 Apr;12(2):307-19 - PubMed
  7. Gastroenterology. 2017 Aug;153(2):420-429 - PubMed
  8. J Cell Biol. 1997 Aug 25;138(4):759-69 - PubMed
  9. J Struct Biol. 2005 Sep;151(3):215-28 - PubMed
  10. J Mol Biol. 2013 Feb 8;425(3):524-35 - PubMed
  11. J Biol Chem. 2002 Sep 13;277(37):34642-50 - PubMed
  12. Toxins (Basel). 2016 Jun 18;8(6): - PubMed
  13. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6800-6805 - PubMed
  14. Gastroenterology. 2009 May;136(6):1863-73 - PubMed
  15. J Mol Biol. 2002 Apr 19;318(1):121-33 - PubMed
  16. Infect Immun. 2016 Aug 19;84(9):2662-70 - PubMed
  17. Annu Rev Pathol. 2021 Jan 24;16:123-144 - PubMed
  18. Mol Biol Cell. 2005 Oct;16(10):4852-66 - PubMed
  19. J Biol Chem. 1999 Apr 2;274(14):9277-82 - PubMed
  20. J Proteome Res. 2010 Apr 5;9(4):1716-26 - PubMed
  21. Infect Immun. 2001 Feb;69(2):730-6 - PubMed
  22. J Biol Chem. 2003 Apr 4;278(14):12101-8 - PubMed
  23. J Am Soc Mass Spectrom. 2012 Jan;23(1):76-87 - PubMed
  24. J Biol Chem. 1999 Dec 31;274(53):37736-42 - PubMed
  25. Gastroenterology. 1999 Apr;116(4):823-30 - PubMed
  26. Sci Rep. 2020 Jun 9;10(1):9307 - PubMed
  27. Infect Immun. 2019 Mar 25;87(4): - PubMed
  28. J Struct Biol. 2015 Nov;192(2):216-21 - PubMed
  29. Biochem Biophys Res Commun. 1998 Jul 20;248(2):334-40 - PubMed
  30. BMC Microbiol. 2010 Feb 23;10:60 - PubMed
  31. Nat Microbiol. 2019 Aug;4(8):1411-1423 - PubMed
  32. J Bacteriol. 2001 Nov;183(22):6499-508 - PubMed
  33. Toxins (Basel). 2016 Jun 03;8(6): - PubMed
  34. J Biol Chem. 1994 Apr 8;269(14):10566-73 - PubMed
  35. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16293-8 - PubMed
  36. J Biol Chem. 2008 Sep 26;283(39):26714-25 - PubMed
  37. Toxins (Basel). 2017 Oct 12;9(10): - PubMed
  38. J Mol Biol. 2019 May 3;431(10):1956-1965 - PubMed
  39. PLoS Pathog. 2008 May 23;4(5):e1000073 - PubMed
  40. mBio. 2016 Jan 26;7(1):e01869-15 - PubMed
  41. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3047-52 - PubMed
  42. Nat Rev Microbiol. 2005 Apr;3(4):320-32 - PubMed
  43. J Natl Cancer Inst. 2002 Nov 20;94(22):1680-7 - PubMed
  44. Toxins (Basel). 2016 Jun 16;8(6): - PubMed
  45. FEBS Lett. 1999 Apr 30;450(1-2):101-4 - PubMed
  46. J Biol Chem. 1995 Oct 13;270(41):23937-40 - PubMed
  47. J Biol Chem. 1992 May 25;267(15):10570-5 - PubMed
  48. Cancer Res. 1995 May 15;55(10):2111-5 - PubMed
  49. J Biol Chem. 2005 Jun 3;280(22):21107-14 - PubMed
  50. Front Cell Infect Microbiol. 2012 Mar 27;2:37 - PubMed
  51. Infect Immun. 2006 Mar;74(3):1786-94 - PubMed
  52. Elife. 2013 Sep 10;2:e01456 - PubMed
  53. J Struct Biol. 2005 Jul;151(1):41-60 - PubMed
  54. Commun Biol. 2019 Jun 19;2:218 - PubMed
  55. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5024-9 - PubMed
  56. Int J Cancer. 2015 Jan 15;136(2):487-90 - PubMed
  57. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2001-6 - PubMed
  58. Infect Immun. 1991 Apr;59(4):1264-70 - PubMed
  59. Mol Microbiol. 2016 Oct;102(1):22-36 - PubMed
  60. J Biol Chem. 1999 Dec 17;274(51):36693-9 - PubMed
  61. J Natl Cancer Inst. 2007 Sep 5;99(17):1328-34 - PubMed
  62. J Allergy Clin Immunol. 2019 Apr;143(4):1496-1512.e11 - PubMed
  63. Infect Immun. 2018 Apr 23;86(5): - PubMed
  64. mBio. 2019 Mar 19;10(2): - PubMed
  65. Front Microbiol. 2010 Nov 23;1:115 - PubMed
  66. EMBO J. 1999 Oct 15;18(20):5517-27 - PubMed
  67. J Exp Med. 1994 May 1;179(5):1653-58 - PubMed
  68. J Struct Biol. 2012 Dec;180(3):519-30 - PubMed

Publication Types

Grant support