Display options
Share it on

Ann N Y Acad Sci. 2021 Nov 17; doi: 10.1111/nyas.14713. Epub 2021 Nov 17.

Noncoding RNAs: biology and applications-a Keystone Symposia report.

Annals of the New York Academy of Sciences

Jennifer Cable, Edith Heard, Tetsuro Hirose, Kannanganattu V Prasanth, Ling-Ling Chen, Jonathan E Henninger, Sofia A Quinodoz, David L Spector, Sarah D Diermeier, Allison M Porman, Dhiraj Kumar, Mark W Feinberg, Xiaohua Shen, Juan Pablo Unfried, Rory Johnson, Chun-Kan Chen, Jeremy E Wilusz, Adelheid Lempradl, Sean E McGeary, Lamia Wahba, Anna Marie Pyle, Amanda E Hargrove, Matthew D Simon, Marco Marcia, Róża K Przanowska, Howard Y Chang, Samie R Jaffrey, Lydia M Contreras, Qi Chen, Junchao Shi, Joshua T Mendell, Lin He, Erwei Song, John L Rinn, Mukesh Kumar Lalwani, Murat Can Kalem, Edward B Chuong, Lynne E Maquat, Xuhang Liu

Affiliations

  1. PhD Science Writer, New York, New York.
  2. European Molecular Biology Laboratory (EMBL), Heidelberg, Heidelberg, Germany.
  3. Collège de France, Paris, France.
  4. Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
  5. Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
  6. Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  7. State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Shanghai, China.
  8. School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
  9. School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China.
  10. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
  11. Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
  12. Cold Spring Harbor Laboratory, Cold Spring Harbor and Genetics Program, Stony Brook University, Stony Brook, New York.
  13. Department of Biochemistry, University of Otago, Dunedin, New Zealand.
  14. Biochemistry and Molecular Genetics Department, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
  15. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  16. Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
  17. Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China.
  18. Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), Pamplona, Spain.
  19. Department of Medical Oncology, Inselspital, Bern University Hospital; and Department for BioMedical Research University of Bern, Bern, Switzerland.
  20. School of Biology and Environmental Science and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
  21. Center for Personal Dynamic Regulomes, Stanford University, Stanford, California.
  22. Department of Genetics, Stanford University School of Medicine, Stanford, California.
  23. Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
  24. Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan.
  25. Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
  26. Department of Pathology, Stanford University School of Medicine, Stanford, California.
  27. Department of Genetics, Yale School of Medicine, New Haven, Connecticut.
  28. Connecticut and Howard Hughes Medical Institute, Chevy Chase, Maryland.
  29. Department of Chemistry, Duke University, Durham, North Carolina.
  30. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
  31. European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.
  32. Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
  33. Howard Hughes Medical Institute, Stanford University, Stanford, California.
  34. Department of Pharmacology, Weill Medical College of Cornell University, New York, New York.
  35. McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas.
  36. Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California.
  37. Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine; and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas.
  38. Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California.
  39. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Bioland Laboratory; Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-sen University; and Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China.
  40. Department of Biochemistry, BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado.
  41. Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland, United Kingdom.
  42. Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
  43. Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
  44. Department of Biochemistry and Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, New York.
  45. Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York.

PMID: 34791665 DOI: 10.1111/nyas.14713

Abstract

The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.

© 2021 New York Academy of Sciences.

Keywords: Xist; circRNA; lncRNA; noncoding RNA; nuclear condensate; phase transition; piRNA; transcription

References

  1. Chowdhary, A., V. Satagopam & R. Schneider. 2021. Long non-coding RNAs: mechanisms, experimental, and computational approaches in identification, characterization, and their biomarker potential in cancer. Front. Genet. 12: 649619. - PubMed
  2. Mattick, J.S. & I.V. Makunin. 2006. Non-coding RNA. Hum. Mol. Genet. 15(Spec No 1): R17-R29. - PubMed
  3. Dossin, F. & E. Heard. 2021. The molecular and nuclear dynamics of X-chromosome inactivation. Cold Spring Harb. Perspect. Biol. a040196. - PubMed
  4. Engreitz, J.M., A. Pandya-Jones, P. McDonel, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973. - PubMed
  5. Giorgetti, L., B.R. Lajoie, A.C. Carter, et al. 2016. Structural organization of the inactive X chromosome in the mouse. Nature 535: 575-579. - PubMed
  6. Chaumeil, J., P. Le Baccon, A. Wutz, et al. 2006. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20: 2223-2237. - PubMed
  7. Chow, J.C., C. Ciaudo, M.J. Fazzari, et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956-969. - PubMed
  8. Collombet, S., I. Rall, C. Dugast-Darzacq, et al. 2021. RNA polymerase II depletion from the inactive X chromosome territory is not mediated by physical compartmentalization. bioRxiv 2021.03.26.437188. - PubMed
  9. Żylicz, J.J., A. Bousard, K. Žumer, et al. 2019. The implication of early chromatin changes in X chromosome inactivation. Cell 176: 182-197.e23. - PubMed
  10. Chu, C., Q.C. Zhang, S.T. da Rocha, et al. 2015. Systematic discovery of Xist RNA binding proteins. Cell 161: 404-416. - PubMed
  11. McHugh, C.A., C.-K. Chen, A. Chow, et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521: 232-236. - PubMed
  12. Chen, C.-K., M. Blanco, C. Jackson, et al. 2016. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354: 468-472. - PubMed
  13. Minajigi, A., J. Froberg, C. Wei, et al. 2015. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349: 10.1126/science.aab2276 aab2276. - PubMed
  14. Moindrot, B., A. Cerase, H. Coker, et al. 2015. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep. 12: 562-572. - PubMed
  15. Monfort, A., G. Di Minin, A. Postlmayr, et al. 2015. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12: 554-561. - PubMed
  16. Dossin, F., I. Pinheiro, J.J. Żylicz, et al. 2020. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578: 455-460. - PubMed
  17. Yamazaki, T., S. Souquere, T. Chujo, et al. 2018. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70: 1038-1053.e7. - PubMed
  18. Yamazaki, T., S. Nakagawa & T. Hirose. 2019. Architectural RNAs for membraneless nuclear body formation. Cold Spring Harb. Symp. Quant. Biol. 84: 227-237. - PubMed
  19. Shin, Y. & C.P. Brangwynne. 2017. Liquid phase condensation in cell physiology and disease. Science 357: eaaf4382. - PubMed
  20. Biamonti, G. 2004. Nuclear stress bodies: a heterochromatin affair? Nat. Rev. Mol. Cell Biol. 5: 493-498. - PubMed
  21. Ninomiya, K., S. Adachi, T. Natsume, et al. 2020. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39: e102729. - PubMed
  22. Ninomiya, K., J. Iwakiri, M.K. Aly, et al. 2021. m6 A modification of HSATIII lncRNAs regulates temperature-dependent splicing. EMBO J. 40: e107976. - PubMed
  23. Xing, Y.-H., R.-W. Yao, Y. Zhang, et al. 2017. SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169: 664-678.e16. - PubMed
  24. Yao, R.-W., G. Xu, Y. Wang, et al. 2019. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76: 767-783.e11. - PubMed
  25. Wu, M., G. Xu, C. Han, et al. 2021. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription. Science 373: 547-555. - PubMed
  26. Wang, X., X. Hu, W. Song, et al. 2021. Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Res. 31: 664-683. - PubMed
  27. Caudron-Herger, M., T. Pankert, J. Seiler, et al. 2015. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 34: 2758-2774. - PubMed
  28. Li, D., J. Zhang, M. Wang, et al. 2018. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat. Commun. 9: 1726. - PubMed
  29. Yap, K., S. Mukhina, G. Zhang, et al. 2018. A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol. Cell 72: 525-540.e13. - PubMed
  30. Audas, T.E., M.D. Jacob & S. Lee. 2012. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol. Cell 45: 147-157. - PubMed
  31. Bierhoff, H., K. Schmitz, F. Maass, et al. 2010. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb. Symp. Quant. Biol. 75: 357-364. - PubMed
  32. Hao, Q. & K.V. Prasanth. 2021. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm. Genome. https://doi.org/10.1007/s00335-021-09906-z. - PubMed
  33. Quinodoz, S.A., N. Ollikainen, B. Tabak, et al. 2018. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174: 744-757.e24. - PubMed
  34. Quinodoz, S.A., P. Bhat, N. Ollikainen, et al. 2020. RNA promotes the formation of spatial compartments in the nucleus. bioRxiv 2020.08.25.267435. - PubMed
  35. Balas, M.M. & A.M. Johnson. 2018. Exploring the mechanisms behind long noncoding RNAs and cancer. Non-Coding RNA Res. 3: 108-117. - PubMed
  36. Haemmig, S. & M.W. Feinberg. 2017. Targeting lncRNAs in cardiovascular disease: options and expeditions. Circ. Res. 120: 620-623. - PubMed
  37. Diermeier, S.D., K.-C. Chang, S.M. Freier, et al. 2016. Mammary tumor-associated RNAs impact tumor cell proliferation, invasion, and migration. Cell Rep. 17: 261-274. - PubMed
  38. Chang, K.-C., S.D. Diermeier, A.T. Yu, et al. 2020. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat. Commun. 11: 6438. - PubMed
  39. Chen, H. & S.H. Lo. 2003. Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochem. J. 370: 1039-1045. - PubMed
  40. Li, J., L. Han, P. Roebuck, et al. 2015. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 75: 3728-3737. - PubMed
  41. Diermeier, S.D. & D.L. Spector. 2017. Antisense oligonucleotide-mediated knockdown in mammary tumor organoids. Bio Protoc. 7: e2511. - PubMed
  42. Yan, X., Z. Hu, Y. Feng, et al. 2015. Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28: 529-540. - PubMed
  43. Gupta, R.A., N. Shah, K.C. Wang, et al. 2010. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464: 1071-1076. - PubMed
  44. Portoso, M., R. Ragazzini, Ž. Brenčič, et al. 2017. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J. 36: 981-994. - PubMed
  45. Porman, A.M., J.T. Roberts, E.D. Duncan, et al. 2021. A single N6-methyladenosine site in lncRNA HOTAIR regulates its function in breast cancer cells. bioRxiv 2020.06.08.140954. - PubMed
  46. Gao, H., G. Chakraborty, A.P. Lee-Lim, et al. 2014. Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc. Natl. Acad. Sci. USA 111: 16532-16537. - PubMed
  47. Haemmig, S., V. Simion & M.W. Feinberg. 2018. Long non-coding RNAs in vascular inflammation. Front. Cardiovasc. Med. 5: 22. - PubMed
  48. Haemmig, S., D. Yang, X. Sun, et al. 2020. Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence. Sci. Transl. Med. 12: eaaw1868. - PubMed
  49. Childs, B.G., D.J. Baker, T. Wijshake, et al. 2016. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354: 472-477. - PubMed
  50. Wang, J.C. & M. Bennett. 2012. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111: 245-259. - PubMed
  51. Simion, V., H. Zhou, S. Haemmig, et al. 2020. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat. Commun. 11: 6135. - PubMed
  52. Simion, V., H. Zhou, J.B. Pierce, et al. 2020. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight 5: 140627. - PubMed
  53. Zhou, H., V. Simion, J.B. Pierce, et al. 2021. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4. FASEB J. 35: e21133. - PubMed
  54. Ni, H., S. Haemmig, Y. Deng, et al. 2021. A smooth muscle cell-enriched long noncoding RNA regulates cell plasticity and atherosclerosis by interacting with serum response factor. Arterioscler. Thromb. Vasc. Biol. 41: 2399-2416. - PubMed
  55. Yin, Y., J.Y. Lu, X. Zhang, et al. 2020. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 580: 147-150. - PubMed
  56. Seila, A.C., J.M. Calabrese, S.S. Levine, et al. 2008. Divergent transcription from active promoters. Science 322: 1849-1851. - PubMed
  57. Henninger, J.E., O. Oksuz, K. Shrinivas, et al. 2021. RNA-mediated feedback control of transcriptional condensates. Cell 184: 207-225.e24. - PubMed
  58. Cisse, I.I., I. Izeddin, S.Z. Causse, et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341: 664-667. - PubMed
  59. Hnisz, D., K. Shrinivas, R.A. Young, et al. 2017. A phase separation model for transcriptional control. Cell 169: 13-23. - PubMed
  60. Shao, W., X. Bi, B. Gao, et al. 2021. Phase separation of RNA-binding protein promotes polymerase engagement and transcription. bioRxiv 2021.03.26.436939. - PubMed
  61. Lee, S., F. Kopp, T.-C. Chang, et al. 2016. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164: 69-80. - PubMed
  62. Kopp, F., M.M. Elguindy, M.E. Yalvac, et al. 2019. PUMILIO hyperactivity drives premature aging of Norad-deficient mice. eLife 8: e42650. - PubMed
  63. Elguindy, M.M., F. Kopp, M. Goodarzi, et al. 2019. PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. eLife 8: e48625. - PubMed
  64. Tichon, A., N. Gil, Y. Lubelsky, et al. 2016. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7: 12209. - PubMed
  65. Tichon, A., R.B.-T. Perry, L. Stojic, et al. 2018. SAM68 is required for regulation of Pumilio by the NORAD long noncoding RNA. Genes Dev. 32: 70-78. - PubMed
  66. Munschauer, M., C.T. Nguyen, K. Sirokman, et al. 2018. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 561: 132-136. - PubMed
  67. Unfried, J.P., G. Serrano, B. Suárez, et al. 2019. Identification of coding and long noncoding RNAs differentially expressed in tumors and preferentially expressed in healthy tissues. Cancer Res. 79: 5167-5180. - PubMed
  68. Unfried, J.P., M. Marín-Baquero, Á. Rivera-Calzada, et al. 2021. Long noncoding RNA NIHCOLE promotes ligation efficiency of DNA double-strand breaks in hepatocellular carcinoma. Cancer Res. 81: 4910-4925. - PubMed
  69. Mendoza-Figueroa, M.S., D.C. Tatomer & J.E. Wilusz. 2020. The integrator complex in transcription and development. Trends Biochem. Sci. 45: 923-934. - PubMed
  70. Baillat, D., M.-A. Hakimi, A.M. Näär, et al. 2005. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123: 265-276. - PubMed
  71. Tatomer, D.C., N.D. Elrod, D. Liang, et al. 2019. The integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 33: 1525-1538. - PubMed
  72. Elrod, N.D., T. Henriques, K.-L. Huang, et al. 2019. The integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell 76: 738-752.e7. - PubMed
  73. Mani, S.R. & C.E. Juliano. 2013. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol. Reprod. Dev. 80: 632-664. - PubMed
  74. Williams, Z., P. Morozov, A. Mihailovic, et al. 2015. Discovery and characterization of piRNAs in the human fetal ovary. Cell Rep. 13: 854-863. - PubMed
  75. Özata, D.M., T. Yu, H. Mou, et al. 2020. Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat. Ecol. Evol. 4: 156-168. - PubMed
  76. Öst, A., A. Lempradl, E. Casas, et al. 2014. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159: 1352-1364. - PubMed
  77. Carone, B.R., L. Fauquier, N. Habib, et al. 2010. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143: 1084-1096. - PubMed
  78. Gapp, K., A. Jawaid, P. Sarkies, et al. 2014. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17: 667-669. - PubMed
  79. Lempradl, A., U. Kugelberg, M. Iconomou, et al. 2021. Intergenerational metabolic priming by sperm piRNAs. bioRxiv 2021.03.29.436592. - PubMed
  80. Grimson, A., K.K.-H. Farh, W.K. Johnston, et al. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27: 91-105. - PubMed
  81. Sheu-Gruttadauria, J., P. Pawlica, S.M. Klum, et al. 2019. Structural basis for target-directed microRNA degradation. Mol. Cell 75: 1243-1255.e7. - PubMed
  82. Sheu-Gruttadauria, J., Y. Xiao, L.F. Gebert, et al. 2019. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38: e101153. - PubMed
  83. McGeary, S.E., N. Bisaria & D.P. Bartel. 2021. Pairing to the microRNA 3′ region occurs through two alternative binding modes, with affinity shaped by nucleotide identity as well as pairing position. bioRxiv 2021.04.13.439700. - PubMed
  84. Vicens, Q. & E. Westhof. 2014. Biogenesis of circular RNAs. Cell 159: 13-14. - PubMed
  85. Chen, L. & G. Shan. 2015. Circular RNAs remain peculiarly unclear in biogenesis and function. Sci. China Life Sci. 58: 616-618. - PubMed
  86. Chen, I., C.-Y. Chen & T.-J. Chuang. 2015. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip. Rev. RNA 6: 563-579. - PubMed
  87. Hansen, T.B., T.I. Jensen, B.H. Clausen, et al. 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495: 384-388. - PubMed
  88. Memczak, S., M. Jens, A. Elefsinioti, et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333-338. - PubMed
  89. Xu, H., S. Guo, W. Li, et al. 2015. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 5: 12453. - PubMed
  90. Ashwal-Fluss, R., M. Meyer, N.R. Pamudurti, et al. 2014. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56: 55-66. - PubMed
  91. Kulcheski, F.R., A.P. Christoff & R. Margis. 2016. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol. 238: 42-51. - PubMed
  92. Zheng, Q., C. Bao, W. Guo, et al. 2016. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7: 11215. - PubMed
  93. Yang, Y., X. Gao, M. Zhang, et al. 2018. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst. 110: 304-315. - PubMed
  94. Zhang, M., K. Zhao, X. Xu, et al. 2018. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9: 4475. - PubMed
  95. Zhang, M., N. Huang, X. Yang, et al. 2018. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37: 1805-1814. - PubMed
  96. Legnini, I., G. Di Timoteo, F. Rossi, et al. 2017. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66: 22-37.e9. - PubMed
  97. Zheng, X., L. Chen, Y. Zhou, et al. 2019. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer 18: 47. - PubMed
  98. Pamudurti, N.R., O. Bartok, M. Jens, et al. 2017. Translation of circRNAs. Mol. Cell 66: 9-21.e7. - PubMed
  99. Liang, W.-C., C.-W. Wong, P.-P. Liang, et al. 2019. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20: 84. - PubMed
  100. Granados-Riveron, J.T. & G. Aquino-Jarquin. 2016. The complexity of the translation ability of circRNAs. Biochim. Biophys. Acta 1859: 1245-1251. - PubMed
  101. Schneider, T., L.-H. Hung, S. Schreiner, et al. 2016. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci. Rep. 6: 31313. - PubMed
  102. Li, L.-J., R.-X. Leng, Y.-G. Fan, et al. 2017. Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res. 361: 1-8. - PubMed
  103. Wang, Y. & Z. Wang. 2015. Efficient backsplicing produces translatable circular mRNAs. RNA 21: 172-179. - PubMed
  104. Chen, X., P. Han, T. Zhou, et al. 2016. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 6: 34985. - PubMed
  105. Jang, S.K., H.G. Kräusslich, M.J. Nicklin, et al. 1988. A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62: 2636-2643. - PubMed
  106. Pelletier, J. & N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320-325. - PubMed
  107. Toor, N., K.S. Keating, S.D. Taylor, et al. 2008. Crystal structure of a self-spliced group II intron. Science 320: 77-82. - PubMed
  108. Rinn, J.L., M. Kertesz, J.K. Wang, et al. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129: 1311-1323. - PubMed
  109. Somarowthu, S., M. Legiewicz, I. Chillón, et al. 2015. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58: 353-361. - PubMed
  110. Rivas, E., J. Clements & S.R. Eddy. 2017. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods 14: 45-48. - PubMed
  111. Tavares, R.C.A., A.M. Pyle & S. Somarowthu. 2019. Phylogenetic analysis with improved parameters reveals conservation in lncRNA structures. J. Mol. Biol. 431: 1592-1603. - PubMed
  112. Morgan, B.S., B.G. Sanaba, A. Donlic, et al. 2019. R-BIND: an interactive database for exploring and developing RNA-targeted chemical probes. ACS Chem. Biol. 14: 2691-2700. - PubMed
  113. Morgan, B.S., J.E. Forte, R.N. Culver, et al. 2017. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew. Chem. Int. Ed. Engl. 56: 13498-13502. - PubMed
  114. Stelzer, A.C., A.T. Frank, J.D. Kratz, et al. 2011. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat. Chem. Biol. 7: 553-559. - PubMed
  115. Patwardhan, N.N., L.R. Ganser, G.J. Kapral, et al. 2017. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MedChemComm 8: 1022-1036. - PubMed
  116. Patwardhan, N.N., Z. Cai, A. Umuhire Juru, et al. 2019. Driving factors in amiloride recognition of HIV RNA targets. Org. Biomol. Chem. 17: 9313-9320. - PubMed
  117. Davila-Calderon, J., N.N. Patwardhan, L.-Y. Chiu, et al. 2020. IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat. Commun. 11: 4775. - PubMed
  118. Brown, J.A., D. Bulkley, J. Wang, et al. 2014. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21: 633-640. - PubMed
  119. Donlic, A., B.S. Morgan, J.L. Xu, et al. 2018. Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew. Chem. Int. Ed. Engl. 57: 13242-13247. - PubMed
  120. Donlic, A., M. Zafferani, G. Padroni, et al. 2020. Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Res. 48: 7653-7664. - PubMed
  121. Zimmer, J.T., N.A. Rosa-Mercado, D. Canzio, et al. 2021. STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. Mol. Cell. https://doi.org/10.1016/j.molcel.2021.08.019. - PubMed
  122. Marcia, M. & A.M. Pyle. 2012. Visualizing group II intron catalysis through the stages of splicing. Cell 151: 497-507. - PubMed
  123. Zhao, C., K.R. Rajashankar, M. Marcia, et al. 2015. Crystal structure of group II intron domain 1 reveals a template for RNA assembly. Nat. Chem. Biol. 11: 967-972. - PubMed
  124. Manigrasso, J., I. Chillón, V. Genna, et al. 2020. Visualizing group II intron dynamics between the first and second steps of splicing. Nat. Commun. 11: 2837. - PubMed
  125. Chunharojrith, P., Y. Nakayama, X. Jiang, et al. 2015. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol. Cell. Endocrinol. 416: 27-35. - PubMed
  126. Zhang, X., K. Rice, Y. Wang, et al. 2010. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151: 939-947. - PubMed
  127. Zhu, J., S. Liu, F. Ye, et al. 2015. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells. PLoS One 10: e0139790. - PubMed
  128. Uroda, T., E. Anastasakou, A. Rossi, et al. 2019. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol. Cell 75: 982-995.e9. - PubMed
  129. Uroda, T., I. Chillón, P. Annibale, et al. 2020. Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nat. Protoc. 15: 2107-2139. - PubMed
  130. Mueller, A.C., M.A. Cichewicz, B.K. Dey, et al. 2015. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol. Cell. Biol. 35: 498-513. - PubMed
  131. Cichewicz, M.A., M. Kiran, R.K. Przanowska, et al. 2018. MUNC, an enhancer RNA upstream from the MYOD gene, induces a subgroup of myogenic transcripts in trans independently of MyoD. Mol. Cell. Biol. 38: e00655-17. - PubMed
  132. Przanowska, R.K., C.A. Weidmann, S. Saha, et al. 2021. Distinct MUNC lncRNA structural domains regulate transcription of different promyogenic factors. bioRxiv 2021.06.22.449443. - PubMed
  133. Invernizzi, P. & M.E. Gershwin. 2009. The genetics of human autoimmune disease. J. Autoimmun. 33: 290-299. - PubMed
  134. Peckham, H., N.M. de Gruijter, C. Raine, et al. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11: 6317. - PubMed
  135. Yu, B., Y. Qi, R. Li, et al. 2021. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 184: 1790-1803.e17. - PubMed
  136. Lu, Z., G.S. Filonov, J.J. Noto, et al. 2015. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21: 1554-1565. - PubMed
  137. Litke, J.L. & S.R. Jaffrey. 2021. Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts. Methods. https://doi.org/10.1016/j.ymeth.2021.05.009. - PubMed
  138. Lukasiewicz, A.J. & L.M. Contreras. 2020. Antisense probing of dynamic RNA structures. Methods 183: 76-83. - PubMed
  139. Sowa, S.W., J. Vazquez-Anderson, C.A. Clark, et al. 2015. Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res. 43: e13. - PubMed
  140. Mihailovic, M.K., J. Vazquez-Anderson, Y. Li, et al. 2018. High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites. Nat. Commun. 9: 4084. - PubMed
  141. Isaacs, F.J., D.J. Dwyer, C. Ding, et al. 2004. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22: 841-847. - PubMed
  142. Leistra, A.N., P. Amador, A. Buvanendiran, et al. 2017. Rational modular RNA engineering based on in vivo profiling of structural accessibility. ACS Synth. Biol. 6: 2228-2240. - PubMed
  143. Mihailovic, M.K., A.M. Ekdahl, A. Chen, et al. 2021. Uncovering transcriptional regulators and targets of sRNAs using an integrative data-mining approach: H-NS-Regulated RseX as a case study. Front. Cell. Infect. Microbiol. 11: 696533. - PubMed
  144. Shi, J., Y. Zhang, D. Tan, et al. 2021. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23: 424-436. - PubMed
  145. Shi, J., E.-A. Ko, K.M. Sanders, et al. 2018. SPORTS1.0: a tool for annotating and profiling non-coding RNAs optimized for rRNA- and tRNA-derived small RNAs. Genomics Proteomics Bioinformatics 16: 144-151. - PubMed
  146. Di Bella, S., A. La Ferlita, G. Carapezza, et al. 2020. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data. Brief. Bioinform. 21: 1987-1998. - PubMed
  147. Gu, W., J. Shi, H. Liu, et al. 2020. Peripheral blood non-canonical small non-coding RNAs as novel biomarkers in lung cancer. Mol. Cancer 19: 159. - PubMed
  148. Peaston, A.E., A.V. Evsikov, J.H. Graber, et al. 2004. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7: 597-606. - PubMed
  149. Kigami, D., N. Minami, H. Takayama, et al. 2003. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod. 68: 651-654. - PubMed
  150. Macfarlan, T.S., W.D. Gifford, S. Driscoll, et al. 2012. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487: 57-63. - PubMed
  151. Macfarlan, T.S., W.D. Gifford, S. Agarwal, et al. 2011. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25: 594-607. - PubMed
  152. Ishiuchi, T., R. Enriquez-Gasca, E. Mizutani, et al. 2015. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22: 662-671. - PubMed
  153. Choi, Y.J., C.-P. Lin, D. Risso, et al. 2017. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science 355: eaag1927. - PubMed
  154. Modzelewski, A., W. Shao, J. Chen, et al. 2021. A species-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for preimplantation development. Cell 184: 5541-5558.e22. https://doi.org/10.1016/j.cell.2021.09.021. - PubMed
  155. Gentles, A.J., A.M. Newman, C.L. Liu, et al. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21: 938-945. - PubMed
  156. Sica, A., P. Larghi, A. Mancino, et al. 2008. Macrophage polarization in tumour progression. Semin. Cancer Biol. 18: 349-355. - PubMed
  157. Liu, J., L. Lao, J. Chen, et al. 2021. The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. Nat. Cancer 2: 457-473. - PubMed
  158. Dumbović, G., U. Braunschweig, H.K. Langner, et al. 2021. Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention. Nat. Commun. 12: 3308. - PubMed
  159. Xin, M., E.N. Olson & R. Bassel-Duby. 2013. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14: 529-541. - PubMed
  160. Chen, J., Q. Hu, B.-F. Zhang, et al. 2019. Long noncoding RNA UCA1 inhibits ischaemia/reperfusion injury induced cardiomyocytes apoptosis via suppression of endoplasmic reticulum stress. Genes Genomics 41: 803-810. - PubMed
  161. Ponnusamy, M., F. Liu, Y.-H. Zhang, et al. 2019. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139: 2668-2684. - PubMed
  162. Vacante, F., J. Rodor, M.K. Lalwani, et al. 2021. CARMN loss regulates smooth muscle cells and accelerates atherosclerosis in mice. Circ. Res. 128: 1258-1275. - PubMed
  163. Ounzain, S., R. Micheletti, C. Arnan, et al. 2015. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell. Cardiol. 89: 98-112. - PubMed
  164. Plaisance, I., S. Perruchoud, M. Fernandez-Tenorio, et al. 2016. Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC Basic Transl. Sci. 1: 472-493. - PubMed
  165. Chen, Y., D.L. Toffaletti, J.L. Tenor, et al. 2014. The Cryptococcus neoformans transcriptome at the site of human meningitis. mBio 5: e01087-01013. - PubMed
  166. Misiak, B., L. Ricceri & M.M. Sąsiadek. 2019. Transposable elements and their epigenetic regulation in mental disorders: current evidence in the field. Front. Genet. https://doi.org/10.3389/fgene.2019.00580. - PubMed
  167. Chuong, E.B., N.C. Elde & C. Feschotte. 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351: 1083-1087. - PubMed
  168. Deniz, Ö., M. Ahmed, C.D. Todd, et al. 2020. Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat. Commun. 11: 3506. - PubMed
  169. Jang, H.S., N.M. Shah, A.Y. Du, et al. 2019. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51: 611-617. - PubMed
  170. Edginton-White, B., P. Cauchy, S.A. Assi, et al. 2019. Global long terminal repeat activation participates in establishing the unique gene expression programme of classical Hodgkin lymphoma. Leukemia 33: 1463-1474. - PubMed
  171. Babaian, A. & D.L. Mager. 2016. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA 7: 24. - PubMed
  172. Lamprecht, B., K. Walter, S. Kreher, et al. 2010. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16: 571-579, 1p following 579. - PubMed
  173. Kim, Y.K., L. Furic, L. Desgroseillers, et al. 2005. Mammalian Staufen1 recruits Upf1 to specific mRNA 3’UTRs so as to elicit mRNA decay. Cell 120: 195-208. - PubMed
  174. Liu, X., H. Alwaseem, H. Molina, et al. 2021. A pro-metastatic tRNA fragment drives nucleolin oligomerization and stabilization of bound metabolic mRNAs. bioRxiv 2021.04.26.441477. - PubMed

Publication Types