Display options
Share it on

Clin Infect Dis. 2021 Dec 16;73(12):2228-2239. doi: 10.1093/cid/ciab147.

Plasma Metabolomic Profiling of Patients Recovered From Coronavirus Disease 2019 (COVID-19) With Pulmonary Sequelae 3 Months After Discharge.

Clinical infectious diseases : an official publication of the Infectious Diseases Society of America

Juanjuan Xu, Mei Zhou, Ping Luo, Zhengrong Yin, Sufei Wang, Tingting Liao, Fan Yang, Zhen Wang, Dan Yang, Yi Peng, Wei Geng, Yunyun Li, Hui Zhang, Yang Jin

Affiliations

  1. Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
  2. Department of Translational Medicine Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
  3. Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

PMID: 33596592 PMCID: PMC7929060 DOI: 10.1093/cid/ciab147

Abstract

BACKGROUND: Elucidation of the molecular mechanisms involved in the pathogenesis of coronavirus disease 2019 (COVID-19) may help to discover therapeutic targets.

METHODS: To determine the metabolomic profile of circulating plasma from COVID-19 survivors with pulmonary sequelae 3 months after discharge, a random, outcome-stratified case-control sample was analyzed. We enrolled 103 recovered COVID-19 patients as well as 27 healthy donors, and performed pulmonary function tests, computerized tomography (CT) scans, laboratory examinations, and liquid chromatography-mass spectrometry.

RESULTS: Plasma metabolite profiles of COVID-19 survivors with abnormal pulmonary function were different from those of healthy donors or subjects with normal pulmonary function. These alterations were associated with disease severity and mainly involved amino acid and glycerophospholipid metabolic pathways. Furthermore, increased levels of triacylglycerols, phosphatidylcholines, prostaglandin E2, arginine, and decreased levels of betain and adenosine were associated with pulmonary CO diffusing capacity and total lung capacity. The global plasma metabolomic profile differed between subjects with abnormal and normal pulmonary function.

CONCLUSIONS: Further metabolite-based analysis may help to identify the mechanisms underlying pulmonary dysfunction in COVID-19 survivors, and provide potential therapeutic targets in the future.

© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society of America.

Keywords: COVID-19; lipidomics; metabolomics; pulmonary function

References

  1. J Pharmacol Exp Ther. 2014 May;349(2):229-38 - PubMed
  2. Cell Death Dis. 2013 May 02;4:e621 - PubMed
  3. Nature. 2020 May;581(7808):323-328 - PubMed
  4. Radiology. 2003 Sep;228(3):810-5 - PubMed
  5. Am J Clin Nutr. 2008 Feb;87(2):424-30 - PubMed
  6. Lancet Infect Dis. 2020 Apr;20(4):425-434 - PubMed
  7. Int J Obes (Lond). 2015 Mar;39(3):465-71 - PubMed
  8. Intensive Care Med. 2015 Jan;41(1):1-11 - PubMed
  9. Food Funct. 2019 Feb 20;10(2):1225-1234 - PubMed
  10. Nat Med. 2020 Jul;26(7):1017-1032 - PubMed
  11. PLoS One. 2013;8(2):e54561 - PubMed
  12. Curr Opin Chem Biol. 2016 Feb;30:52-60 - PubMed
  13. Cell Metab. 2020 Aug 4;32(2):188-202.e5 - PubMed
  14. PLoS One. 2018 Feb 20;13(2):e0193114 - PubMed
  15. Cardiovasc Res. 1996 Nov;32(5):797-813 - PubMed
  16. Cell. 2016 Oct 20;167(3):829-842.e13 - PubMed
  17. Front Immunol. 2018 May 24;9:1070 - PubMed
  18. Eur J Pharmacol. 2006 Mar 8;533(1-3):77-88 - PubMed
  19. Biochem Pharmacol. 2018 May;151:307-313 - PubMed
  20. Br J Clin Pharmacol. 1983 Feb;15(2):161-5 - PubMed
  21. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2194-8 - PubMed
  22. Immunity. 2014 Apr 17;40(4):554-68 - PubMed
  23. J Infect. 2020 Aug;81(2):e150-e152 - PubMed
  24. Clin Immunol. 2006 Jun;119(3):229-40 - PubMed
  25. Diabetes Metab Res Rev. 2013 Nov;29(8):607-17 - PubMed
  26. Natl Sci Rev. 2020 Jul;7(7):1157-1168 - PubMed
  27. IEEE Trans Med Imaging. 2001 Jun;20(6):490-8 - PubMed
  28. PLoS One. 2014 Mar 03;9(3):e90232 - PubMed
  29. N Engl J Med. 1993 Dec 30;329(27):2002-12 - PubMed
  30. Eur Respir J. 2014 May;43(5):1448-58 - PubMed
  31. Radiology. 2020 Aug;296(2):E55-E64 - PubMed
  32. Korean J Radiol. 2020 Jun;21(6):746-755 - PubMed
  33. Cell. 2020 Jul 9;182(1):59-72.e15 - PubMed
  34. Am J Respir Crit Care Med. 2019 Oct 15;200(8):e70-e88 - PubMed
  35. Br J Pharmacol. 2017 Jul;174(13):1945-1960 - PubMed
  36. Respir Med. 2017 Jan;122:43-50 - PubMed
  37. Mol Biol Rep. 2020 Aug;47(8):5729-5735 - PubMed
  38. Gastroenterology. 2010 Apr;138(4):1455-67, 1467.e1-4 - PubMed

Publication Types

Grant support