Display options
Share it on

Mol Cell. 2021 Nov 04;81(21):4527-4539.e8. doi: 10.1016/j.molcel.2021.08.007. Epub 2021 Aug 17.

Structural and mechanistic basis for protein glutamylation by the kinase fold.

Molecular cell

Adam Osinski, Miles H Black, Krzysztof Pawłowski, Zhe Chen, Yang Li, Vincent S Tagliabracci

Affiliations

  1. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
  2. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
  3. Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
  4. Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: [email protected].
  5. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: [email protected].

PMID: 34407442 PMCID: PMC8571041 DOI: 10.1016/j.molcel.2021.08.007

Abstract

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.

Copyright © 2021 Elsevier Inc. All rights reserved.

Keywords: Legionella; SdeA; SdeB; SdeC; SdjA; SidE; SidJ; effectors; glutamylation; pseudokinase

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

  1. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 - PubMed
  2. Cell Host Microbe. 2016 Jan 13;19(1):67-78 - PubMed
  3. Sci Signal. 2019 Apr 23;12(578): - PubMed
  4. Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23518-23526 - PubMed
  5. Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8 - PubMed
  6. Genome Res. 2004 Jun;14(6):1188-90 - PubMed
  7. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9 - PubMed
  8. Nature. 2019 Aug;572(7769):382-386 - PubMed
  9. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 - PubMed
  10. Nature. 2019 Aug;572(7769):387-391 - PubMed
  11. Mol Cell. 2020 Jan 2;77(1):164-179.e6 - PubMed
  12. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  13. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  14. J Struct Biol. 2016 Jan;193(1):1-12 - PubMed
  15. Nature. 2011 Aug 07;477(7362):103-6 - PubMed
  16. Trends Cell Biol. 2015 Mar;25(3):125-36 - PubMed
  17. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 - PubMed
  18. EMBO J. 2005 Sep 21;24(18):3190-201 - PubMed
  19. Structure. 2020 Jul 7;28(7):858-869.e3 - PubMed
  20. Nat Rev Microbiol. 2009 Jan;7(1):13-24 - PubMed
  21. Cell. 2016 Dec 1;167(6):1636-1649.e13 - PubMed
  22. Elife. 2019 Nov 04;8: - PubMed
  23. J Biol Chem. 2015 Jul 10;290(28):17163-72 - PubMed
  24. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 - PubMed
  25. Science. 2011 Jul 22;333(6041):453-6 - PubMed
  26. Nat Struct Mol Biol. 2011 Oct 23;18(11):1250-8 - PubMed
  27. Commun Biol. 2021 Jul 15;4(1):874 - PubMed
  28. Cell. 2018 Oct 18;175(3):809-821.e19 - PubMed
  29. J Cell Biol. 2017 Dec 4;216(12):3931-3948 - PubMed
  30. Nature. 2018 May;557(7707):734-738 - PubMed
  31. Nature. 2018 May;557(7707):729-733 - PubMed
  32. PLoS Pathog. 2015 Mar 16;11(3):e1004695 - PubMed
  33. Cell Res. 2017 Jul;27(7):865-881 - PubMed
  34. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  35. Mol Microbiol. 2005 Apr;56(1):90-103 - PubMed
  36. J Struct Biol. 2005 Oct;152(1):36-51 - PubMed
  37. Science. 2019 May 24;364(6442):787-792 - PubMed
  38. EMBO J. 2019 Oct 4;38(21):e100847 - PubMed
  39. Infect Immun. 2007 Feb;75(2):592-603 - PubMed
  40. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 - PubMed
  41. Nature. 2018 May;557(7707):674-678 - PubMed
  42. Methods Mol Biol. 1999;115:11-8 - PubMed
  43. Elife. 2018 Nov 09;7: - PubMed
  44. Infect Immun. 2015 Sep;83(9):3506-14 - PubMed
  45. Bioinformatics. 2010 Mar 1;26(5):680-2 - PubMed
  46. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 - PubMed
  47. J Virol. 2006 May;80(10):4978-91 - PubMed
  48. Nat Struct Mol Biol. 2020 Sep;27(9):802-813 - PubMed
  49. Cell Host Microbe. 2017 Feb 8;21(2):169-181 - PubMed
  50. Brief Bioinform. 2019 Jul 19;20(4):1160-1166 - PubMed
  51. Cell. 2018 May 17;173(5):1231-1243.e16 - PubMed
  52. Commun Biol. 2019 Jun 19;2:218 - PubMed
  53. Nat Methods. 2017 Apr;14(4):331-332 - PubMed
  54. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:189-98 - PubMed
  55. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6): - PubMed
  56. Cell. 2015 May 21;161(5):1112-1123 - PubMed
  57. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  58. J Mol Biol. 1999 Aug 13;291(2):239-47 - PubMed
  59. Nature. 2016 May 5;533(7601):120-4 - PubMed
  60. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4 - PubMed
  61. Sci Signal. 2019 Aug 13;12(594): - PubMed
  62. J Struct Biol. 2012 Dec;180(3):519-30 - PubMed

Publication Types

Grant support