Display options
Share it on

EBioMedicine. 2021 Dec 05;74:103725. doi: 10.1016/j.ebiom.2021.103725. Epub 2021 Dec 05.

Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation.

EBioMedicine

Yonghong Luo, Yanhong Guo, Huilun Wang, Minzhi Yu, Kristen Hong, Dan Li, Ruiting Li, Bo Wen, Die Hu, Lin Chang, Jifeng Zhang, Bo Yang, Duxin Sun, Anna S Schwendeman, Y Eugene Chen

Affiliations

  1. Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Second Xiangya Hospital, Central South University, Hunan Province, China.
  2. Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address: [email protected].
  3. Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
  4. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
  5. Second Xiangya Hospital, Central South University, Hunan Province, China.
  6. Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
  7. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA. Electronic address: [email protected].
  8. Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI, USA. Electronic address: [email protected].

PMID: 34879325 PMCID: PMC8654800 DOI: 10.1016/j.ebiom.2021.103725

Abstract

BACKGROUND: Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cholesterol crystals (CCs) induce inflammation in atherosclerosis and are associated with unstable plaques and poor prognosis, but no drug can remove CCs in the clinic currently.

METHODS: We generated a phospholipid-based and high-density lipoprotein (HDL)-like nanoparticle, miNano, and determined CC-dissolving capacity, cholesterol efflux property, and anti-inflammation effects of miNano in vitro. Both normal C57BL/6J and Apoe-deficient mice were used to explore the accumulation of miNano in atherosclerotic plaques. The efficacy and safety of miNano administration to treat atherosclerosis were evaluated in the Ldlr-deficient atherosclerosis model. The CC-dissolving capacity of miNano was also detected using human atherosclerotic plaques ex vivo.

FINDINGS: We found that miNano bound to and dissolved CCs efficiently in vitro, and miNano accumulated in atherosclerotic plaques, co-localized with CCs and macrophages in vivo. Administration of miNano inhibited atherosclerosis and improved plaque stability by reducing CCs and macrophages in Ldlr-deficient mice with favorable safety profiles. In macrophages, miNano prevented foam cell formation by enhancing cholesterol efflux and suppressed inflammatory responses via inhibiting TLR4-NF-κB pathway. Finally, in an ex vivo experiment, miNano effectively dissolved CCs in human aortic atherosclerotic plaques.

INTERPRETATION: Together, our work finds that phospholipid-based and HDL-like nanoparticle, miNano, has the potential to treat atherosclerosis by targeting CCs and stabilizing plaques.

FUNDING: This work was supported by the National Institutes of Health HL134569, HL109916, HL136231, and HL137214 to Y.E.C, HL138139 to J.Z., R21NS111191 to A.S., by the American Heart Association 15SDG24470155, Grant Awards (U068144 from Bio-interfaces and G024404 from M-BRISC) at the University of Michigan to Y.G., by the American Heart Association 19PRE34400017 and Rackham Helen Wu award to M.Y., NIH T32 GM07767 to K. H., Barbour Fellowship to D.L.

Copyright © 2021. Published by Elsevier B.V.

Keywords: Atherosclerosis; Cholesterol crystal; HDL; Inflammation; Nanoparticle

Conflict of interest statement

Declaration of Competing Interest The authors have declared that no conflict of interest exists.

References

  1. Hear Res. 2020 Oct;396:108073 - PubMed
  2. Front Cell Neurosci. 2017 Nov 08;11:355 - PubMed
  3. Atherosclerosis. 2016 Apr;247:111-7 - PubMed
  4. J Am Coll Cardiol. 2013 Jan 29;61(4):404-410 - PubMed
  5. Eur Heart J. 2020 Jun 21;41(24):2313-2330 - PubMed
  6. EBioMedicine. 2018 Feb;28:225-233 - PubMed
  7. Arterioscler Thromb Vasc Biol. 2011 Sep;31(9):2007-14 - PubMed
  8. J Am Coll Cardiol. 2017 Jul 4;70(1):1-25 - PubMed
  9. Atherosclerosis. 2019 Aug;287:100-111 - PubMed
  10. Biomolecules. 2019 Sep 20;9(10): - PubMed
  11. Pharmacol Ther. 2020 Oct;214:107620 - PubMed
  12. Atherosclerosis. 2019 Apr;283:79-84 - PubMed
  13. N Engl J Med. 2019 Dec 26;381(26):2497-2505 - PubMed
  14. Atherosclerosis. 2016 Aug;251:197-205 - PubMed
  15. EBioMedicine. 2020 Oct;60:102985 - PubMed
  16. Sci Rep. 2016 Aug 30;6:31750 - PubMed
  17. Lancet Diabetes Endocrinol. 2020 Jan;8(1):36-49 - PubMed
  18. Eur Heart J. 2020 Jun 21;41(24):2236-2239 - PubMed
  19. Circ Res. 2013 Jul 19;113(3):252-65 - PubMed
  20. Immunobiology. 2014 Oct;219(10):786-92 - PubMed
  21. J Clin Invest. 1993 Aug;92(2):883-93 - PubMed
  22. Trends Biochem Sci. 2005 Jan;30(1):43-52 - PubMed
  23. JAMA. 2007 Apr 18;297(15):1675-82 - PubMed
  24. J Pharmacol Exp Ther. 2020 Feb;372(2):193-204 - PubMed
  25. J Lipid Res. 2017 Jan;58(1):124-136 - PubMed
  26. J Clin Lipidol. 2010 May-Jun;4(3):156-64 - PubMed
  27. J Control Release. 2020 Dec 10;328:792-804 - PubMed
  28. Cardiovasc Res. 2021 Feb 04;: - PubMed
  29. Biomedicines. 2020 Sep 23;8(10): - PubMed
  30. Front Immunol. 2018 May 29;9:1163 - PubMed
  31. J Clin Invest. 2015 Oct 1;125(10):3819-30 - PubMed
  32. PLoS One. 2012;7(12):e53280 - PubMed
  33. J Control Release. 2021 Jan 10;329:361-371 - PubMed
  34. Eur Heart J. 2014 Dec 7;35(46):3277-86 - PubMed
  35. N Engl J Med. 2020 Nov 5;383(19):1838-1847 - PubMed
  36. N Engl J Med. 2017 May 4;376(18):1713-1722 - PubMed
  37. J Lipid Res. 2015 Sep;56(9):1727-37 - PubMed
  38. Pharmacol Ther. 2016 Jan;157:28-42 - PubMed
  39. Nature. 2010 Apr 29;464(7293):1357-61 - PubMed
  40. J Cardiol. 2017 Jan;69(1):253-259 - PubMed
  41. J Cell Sci. 2019 Dec 2;132(23): - PubMed
  42. J Am Heart Assoc. 2020 Aug 4;9(15):e016506 - PubMed
  43. J Mater Chem B. 2020 Feb 19;8(7):1496-1506 - PubMed
  44. N Engl J Med. 2017 Sep 21;377(12):1119-1131 - PubMed
  45. Am J Cardiol. 2017 Nov 15;120(10):1699-1707 - PubMed
  46. Int J Mol Sci. 2020 Jan 22;21(3): - PubMed
  47. J Am Coll Cardiol. 2015 Feb 17;65(6):630-2 - PubMed
  48. Behav Res Methods. 2007 May;39(2):175-91 - PubMed
  49. J Clin Invest. 1997 Feb 15;99(4):773-80 - PubMed
  50. Eur Heart J. 2020 Nov 7;41(42):4092-4099 - PubMed
  51. Nat Immunol. 2013 Aug;14(8):812-20 - PubMed
  52. Curr Opin Lipidol. 2013 Oct;24(5):419-25 - PubMed
  53. Arch Otolaryngol. 1978 Dec;104(12):726-9 - PubMed
  54. JAMA Cardiol. 2018 Sep 1;3(9):815-822 - PubMed
  55. JAMA. 2003 Nov 5;290(17):2292-300 - PubMed
  56. PLoS One. 2017 Jun 30;12(6):e0180303 - PubMed
  57. Science. 2015 Jul 17;349(6245):316-20 - PubMed
  58. Circulation. 2002 Apr 30;105(17):2064-70 - PubMed
  59. J Am Coll Cardiol. 2017 Oct 31;70(18):2278-2289 - PubMed
  60. Ochsner J. 2014 Winter;14(4):669-72 - PubMed
  61. Nat Rev Drug Discov. 2003 Mar;2(3):214-21 - PubMed
  62. Biochim Biophys Acta. 2007 Jun;1768(6):1311-24 - PubMed
  63. Sci Transl Med. 2016 Apr 6;8(333):333ra50 - PubMed
  64. Eur Heart J. 2012 Mar;33(5):657-65 - PubMed
  65. Am J Pathol. 2018 Feb;188(2):525-538 - PubMed
  66. Immunology. 2016 Nov;149(3):306-319 - PubMed
  67. Atherosclerosis. 1978 Dec;31(4):473-80 - PubMed
  68. Int J Pharm. 2020 Jun 30;584:119440 - PubMed
  69. Eur Heart J. 2016 Jul 01;37(25):1959-67 - PubMed
  70. Circulation. 2001 Dec 18;104(25):3103-8 - PubMed

Publication Types

Grant support