Display options
Share it on

Lancet Respir Med. 2021 Jul 23; doi: 10.1016/S2213-2600(21)00157-0. Epub 2021 Jul 23.

Advancing precision medicine for acute respiratory distress syndrome.

The Lancet. Respiratory medicine

Jeremy R Beitler, B Taylor Thompson, Rebecca M Baron, Julie A Bastarache, Loren C Denlinger, Laura Esserman, Michelle N Gong, Lisa M LaVange, Roger J Lewis, John C Marshall, Thomas R Martin, Daniel F McAuley, Nuala J Meyer, Marc Moss, Lora A Reineck, Eileen Rubin, Eric P Schmidt, Theodore J Standiford, Lorraine B Ware, Hector R Wong, Neil R Aggarwal, Carolyn S Calfee

Affiliations

  1. Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA.
  2. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
  3. Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
  4. Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
  5. Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
  6. Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
  7. Division of Pulmonary and Critical Care Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA.
  8. Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  9. Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA; Berry Consultants, LLC, Austin, TX; Department of Emergency Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  10. Departments of Surgery and Critical Care Medicine, University of Toronto, Toronto, Canada.
  11. Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.
  12. Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast and Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, Northern Ireland.
  13. Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  14. Division of Pulmonary Sciences and Critical Care, University of Colorado School of Medicine, Aurora, CO, USA.
  15. Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
  16. ARDS Foundation, Northbrook, IL, USA.
  17. Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.
  18. Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
  19. Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA. Electronic address: [email protected].
  20. Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and Department of Anesthesia, University of California San Francisco, San Francisco, CA, USA.

PMID: 34310901 PMCID: PMC8302189 DOI: 10.1016/S2213-2600(21)00157-0

Abstract

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Conflict of interest statement

Declaration of interests JRB reports grants from the US National Institutes of Health (NIH) and Quantum Leap Healthcare Collaborative and personal fees from Sedana Medical and Hamilton Medical, outsid

References

  1. Lancet Respir Med. 2020 Mar;8(3):258-266 - PubMed
  2. J Allergy Clin Immunol. 2021 May;147(5):1594-1601 - PubMed
  3. Ann Intern Med. 2004 Sep 21;141(6):440-5 - PubMed
  4. Am J Respir Crit Care Med. 2005 Feb 15;171(4):340-7 - PubMed
  5. J Allergy Clin Immunol. 2019 Jan;143(1):104-113.e14 - PubMed
  6. Am J Respir Crit Care Med. 2012 Jun 15;185(12):1307-15 - PubMed
  7. Intensive Care Med. 2014 Mar;40(3):332-41 - PubMed
  8. Lancet Respir Med. 2015 Jan;3(1):53-60 - PubMed
  9. N Engl J Med. 2021 Feb 25;384(8):693-704 - PubMed
  10. J Biopharm Stat. 2020 Nov 1;30(6):1026-1037 - PubMed
  11. N Engl J Med. 2021 Feb 11;384(6):497-511 - PubMed
  12. Am J Respir Crit Care Med. 2020 Jan 1;201(1):47-56 - PubMed
  13. Crit Care Med. 2015 Sep;43(9):1790-7 - PubMed
  14. Am J Respir Crit Care Med. 2011 Feb 15;183(4):462-70 - PubMed
  15. Crit Care Med. 2012 Jun;40(6):1731-7 - PubMed
  16. N Engl J Med. 2000 May 4;342(18):1301-8 - PubMed
  17. N Engl J Med. 2013 Jun 6;368(23):2159-68 - PubMed
  18. Crit Care Med. 2016 Nov;44(11):2010-2017 - PubMed
  19. N Engl J Med. 2006 Jun 15;354(24):2564-75 - PubMed
  20. N Engl J Med. 2015 Feb 26;372(9):793-5 - PubMed
  21. J Allergy Clin Immunol. 2019 Jan;143(1):135-141 - PubMed
  22. Clin Pharmacol Ther. 2009 Jul;86(1):97-100 - PubMed
  23. JAMA. 2003 Apr 23-30;289(16):2104-12 - PubMed
  24. Intensive Care Med. 2020 Dec;46(12):2136-2152 - PubMed
  25. N Engl J Med. 2019 Aug 15;381(7):626-636 - PubMed
  26. Nat Rev Nephrol. 2020 Jan;16(1):20-31 - PubMed
  27. Nature. 2012 Mar 25;484(7395):519-23 - PubMed
  28. Am J Respir Crit Care Med. 2011 Sep 1;184(5):561-8 - PubMed
  29. Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23 - PubMed
  30. Chest. 2015 Jun;147(6):1539-1548 - PubMed
  31. Intensive Care Med. 2016 Feb;42(2):164-72 - PubMed
  32. Nat Genet. 2004 Nov;36(11):1133-7 - PubMed
  33. Am J Respir Crit Care Med. 2017 Feb 1;195(3):331-338 - PubMed
  34. Mamm Genome. 2018 Aug;29(7-8):471-487 - PubMed
  35. Intensive Care Med. 2018 Nov;44(11):1849-1858 - PubMed
  36. N Engl J Med. 2019 May 23;380(21):1997-2008 - PubMed
  37. Lancet Respir Med. 2020 Mar;8(3):247-257 - PubMed
  38. JAMA. 2016 Feb 23;315(8):788-800 - PubMed
  39. Lancet Respir Med. 2016 Jan;4(1):59-72 - PubMed
  40. Am J Respir Crit Care Med. 2010 May 15;181(10):1121-7 - PubMed
  41. Lancet. 2012 Jan 21;379(9812):229-35 - PubMed
  42. Crit Care Med. 2005 Jan;33(1):1-6; discussion 230-2 - PubMed
  43. Lancet Respir Med. 2018 Sep;6(9):691-698 - PubMed
  44. Crit Care Med. 2020 Feb;48(2):158-166 - PubMed
  45. Curr Opin Crit Care. 2019 Feb;25(1):3-11 - PubMed
  46. N Engl J Med. 2016 Jul 7;375(1):23-34 - PubMed
  47. J Allergy Clin Immunol. 2006 Dec;118(6):1312-9 - PubMed
  48. JAMA Oncol. 2020 Sep 1;6(9):1390-1396 - PubMed
  49. Drug Discov Today. 2019 Dec;24(12):2341-2349 - PubMed
  50. N Engl J Med. 2014 Jun 5;370(23):2191-200 - PubMed
  51. Chest. 2016 Nov;150(5):998-1007 - PubMed
  52. Am J Respir Crit Care Med. 2013 Sep 1;188(5):567-76 - PubMed
  53. Nature. 2016 Jun 14;534(7607):314-6 - PubMed
  54. Chest. 1995 Apr;107(4):1062-73 - PubMed
  55. Dis Model Mech. 2011 Mar;4(2):145-53 - PubMed
  56. Crit Care Med. 2003 Apr;31(4 Suppl):S305-11 - PubMed
  57. Am J Physiol Renal Physiol. 2012 Sep 15;303(6):F864-72 - PubMed
  58. Ann Am Thorac Soc. 2013 Feb;10(1):31-8 - PubMed
  59. Lancet Respir Med. 2014 Mar;2(3):238-46 - PubMed
  60. Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 1):414-9 - PubMed
  61. Lancet Respir Med. 2017 Mar;5(3):212-223 - PubMed
  62. N Engl J Med. 2017 Jul 6;377(1):62-70 - PubMed
  63. JAMA. 2020 Oct 6;324(13):1317-1329 - PubMed
  64. JAMA. 2020 Oct 6;324(13):1330-1341 - PubMed
  65. Am J Respir Crit Care Med. 2017 Nov 1;196(9):1122-1130 - PubMed
  66. Am J Respir Crit Care Med. 2014 Jan 15;189(2):149-58 - PubMed
  67. JAMA. 2019 Mar 5;321(9):846-857 - PubMed
  68. Lancet Respir Med. 2014 Aug;2(8):611-20 - PubMed
  69. Am J Respir Crit Care Med. 2013 Apr 1;187(7):761-7 - PubMed
  70. Intensive Care Med. 2018 Sep;44(9):1388-1399 - PubMed
  71. Eur Respir J. 2016 Feb;47(2):410-9 - PubMed
  72. N Engl J Med. 2011 Apr 7;364(14):1293-304 - PubMed
  73. Intensive Care Med. 2013 Apr;39(4):583-92 - PubMed
  74. Intensive Care Med. 2018 Nov;44(11):1859-1869 - PubMed
  75. Crit Care Med. 2020 Dec;48(12):1710-1719 - PubMed
  76. Clin Trials. 2020 Feb;17(1):52-60 - PubMed
  77. JAMA. 2012 Jun 20;307(23):2526-33 - PubMed
  78. Am J Respir Crit Care Med. 2019 Apr 1;199(7):823-829 - PubMed
  79. Lancet. 2018 Feb 24;391(10122):783-800 - PubMed
  80. Intensive Care Med. 2020 Jun;46(6):1222-1231 - PubMed
  81. Lancet Respir Med. 2013 Jul;1(5):395-401 - PubMed
  82. Am J Respir Crit Care Med. 2013 Sep 15;188(6):693-702 - PubMed
  83. Ann Am Thorac Soc. 2020 Jul;17(7):879-891 - PubMed
  84. N Engl J Med. 2010 Sep 16;363(12):1107-16 - PubMed
  85. Am J Respir Crit Care Med. 2016 May 15;193(10):1143-50 - PubMed
  86. Am J Physiol Lung Cell Mol Physiol. 2007 Jul;293(1):L52-9 - PubMed
  87. N Engl J Med. 2015 Feb 19;372(8):747-55 - PubMed
  88. Nat Rev Dis Primers. 2019 Mar 14;5(1):18 - PubMed
  89. J Clin Oncol. 2012 Sep 10;30(26):3242-9 - PubMed
  90. Thorax. 2017 Oct;72(10):876-883 - PubMed
  91. Nat Protoc. 2009;4(1):31-6 - PubMed
  92. Chest. 2017 Apr;151(4):755-763 - PubMed
  93. Lancet Respir Med. 2019 Oct;7(10):870-880 - PubMed
  94. N Engl J Med. 2020 Feb 27;382(9):810-821 - PubMed
  95. Am J Respir Crit Care Med. 2019 Jul 1;200(1):42-50 - PubMed
  96. Crit Care Med. 2017 May;45(5):798-805 - PubMed
  97. JAMA. 2015 Apr 28;313(16):1619-20 - PubMed
  98. Am J Respir Crit Care Med. 2012 Feb 15;185(4):356-62 - PubMed
  99. Crit Care Med. 2005 May;33(5):1077-83 - PubMed
  100. J Immunol. 2005 Aug 15;175(4):2570-8 - PubMed
  101. Shock. 2020 Apr;53(4):460-467 - PubMed

Publication Types

Grant support