Display options
Share it on

Cereb Cortex. 2021 Oct 01;31(11):5131-5138. doi: 10.1093/cercor/bhab147.

Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons.

Cerebral cortex (New York, N.Y. : 1991)

Roger N Lemon, Stuart N Baker, Alexander Kraskov

Affiliations

  1. Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
  2. Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.

PMID: 34117760 PMCID: PMC8491674 DOI: 10.1093/cercor/bhab147

Abstract

Many investigators who make extracellular recordings from populations of cortical neurons are now using spike shape parameters, and particularly spike duration, as a means of classifying different neuronal sub-types. Because of the nature of the experimental approach, particularly that involving nonhuman primates, it is very difficult to validate directly which spike characteristics belong to particular types of pyramidal neurons and interneurons, as defined by modern histological approaches. This commentary looks at the way antidromic identification of pyramidal cells projecting to different targets, and in particular, pyramidal tract neurons (PTN), can inform the utility of spike width classification. Spike duration may provide clues to a diversity of function across the pyramidal cell population, and also highlights important differences that exist across species. Our studies suggest that further electrophysiological and optogenetic approaches are needed to validate spike duration as a means of cell classification and to relate this to well-established histological differences in neocortical cell types.

© The Author(s) 2021. Published by Oxford University Press.

Keywords: antidromic; cell types classification; interneurons; pyramidal; spike shape

References

  1. Cereb Cortex. 2020 Jun 30;30(8):4544-4562 - PubMed
  2. Cereb Cortex. 2009 Jul;19(7):1597-615 - PubMed
  3. J Comp Neurol. 2017 Jun 15;525(9):2164-2174 - PubMed
  4. Cereb Cortex. 2019 Aug 14;29(9):3977-3981 - PubMed
  5. Brain. 1968 Mar;91(1):1-14 - PubMed
  6. Brain Res. 1979 Mar 9;163(1):33-48 - PubMed
  7. J Neurosci. 2012 Jan 11;32(2):626-38 - PubMed
  8. J Neurosci. 2008 Sep 10;28(37):9164-72 - PubMed
  9. Neuron. 2015 Apr 8;86(1):92-105 - PubMed
  10. J Neurosci Methods. 1996 Apr;65(2):113-36 - PubMed
  11. J Neurophysiol. 1985 Oct;54(4):782-806 - PubMed
  12. J Neurophysiol. 1982 Dec;48(6):1302-20 - PubMed
  13. J Neurophysiol. 2014 Sep 15;112(6):1229-40 - PubMed
  14. J Neurophysiol. 2002 Dec;88(6):3487-97 - PubMed
  15. J Neurophysiol. 2012 Jan;107(2):728-41 - PubMed
  16. J Neural Eng. 2016 Aug;13(4):046018 - PubMed
  17. J Neurosci. 2000 Sep 15;20(18):7096-108 - PubMed
  18. Neuroscience. 2004;129(1):179-85 - PubMed
  19. Eur J Neurosci. 2018 Aug;48(4):2071-2083 - PubMed
  20. J Neurophysiol. 2009 Feb;101(2):912-6 - PubMed
  21. J Neurophysiol. 2005 Nov;94(5):3009-22 - PubMed
  22. J Neurosci. 2018 Jul 4;38(27):6190-6206 - PubMed
  23. J Neurophysiol. 2007 Nov;98(5):2962-73 - PubMed
  24. Curr Biol. 2019 Sep 23;29(18):2973-2982.e5 - PubMed
  25. J Neurosci. 1991 Mar;11(3):667-89 - PubMed
  26. Nat Rev Neurosci. 2017 Sep;18(9):530-546 - PubMed
  27. Front Neural Circuits. 2013 Nov 18;7:181 - PubMed
  28. J Neurosci. 2012 Nov 28;32(48):17351-64 - PubMed
  29. Neuron. 2007 Jul 5;55(1):131-41 - PubMed
  30. Nature. 2017 Nov 8;551(7679):232-236 - PubMed
  31. Cereb Cortex. 2020 May 14;30(5):3403-3418 - PubMed
  32. J Neurophysiol. 1989 Jul;62(1):288-308 - PubMed
  33. J Neurosci. 2011 Oct 5;31(40):14235-42 - PubMed
  34. J Neurophysiol. 2010 Aug;104(2):799-810 - PubMed
  35. Exp Neurol. 1970 Nov;29(2):366-81 - PubMed
  36. J Neurophysiol. 1965 Sep;28(5):908-24 - PubMed
  37. J Neurosci. 2009 Apr 29;29(17):5516-24 - PubMed
  38. J Neurosci. 2015 Feb 18;35(7):2975-91 - PubMed
  39. J Neurophysiol. 2005 Feb;93(2):942-53 - PubMed
  40. J Comp Neurol. 2013 Dec 15;521(18):4205-35 - PubMed
  41. J Neurophysiol. 1978 May;41(3):798-820 - PubMed
  42. J Neurosci. 2008 Jul 30;28(31):7737-47 - PubMed
  43. J Neurophysiol. 2008 Jul;100(1):474-81 - PubMed
  44. J Comp Neurol. 2009 Oct 1;516(4):291-311 - PubMed
  45. J Neurophysiol. 1994 Feb;71(2):437-53 - PubMed
  46. Brain Res. 1979 Dec 14;178(2-3):251-74 - PubMed
  47. Brain Res. 1986 Feb 19;365(2):211-27 - PubMed
  48. J Neurophysiol. 2010 Apr;103(4):2124-38 - PubMed
  49. Nat Rev Neurosci. 2007 Jun;8(6):451-65 - PubMed
  50. J Neurophysiol. 1991 Oct;66(4):1392-409 - PubMed
  51. J Neurosci Methods. 1981 Jun;4(1):1-32 - PubMed
  52. Biosens Bioelectron. 2019 Feb 1;126:355-364 - PubMed
  53. J Neurophysiol. 2004 Jun;91(6):2782-96 - PubMed
  54. J Neurosci. 2014 Apr 9;34(15):5355-69 - PubMed
  55. J Neurophysiol. 1990 Jun;63(6):1477-98 - PubMed
  56. Annu Rev Neurosci. 2008;31:195-218 - PubMed
  57. J Neurophysiol. 2020 Dec 1;124(6):1588-1604 - PubMed
  58. J Physiol. 1988 Jun;400:593-615 - PubMed
  59. J Neurophysiol. 1969 May;32(3):452-84 - PubMed
  60. J Neurophysiol. 1976 Mar;39(2):420-34 - PubMed
  61. J Neurophysiol. 2004 Jul;92(1):600-8 - PubMed
  62. Neural Netw. 2004 Jun-Jul;17(5-6):633-46 - PubMed
  63. Neuron. 2016 Jul 20;91(2):260-92 - PubMed

Publication Types

Grant support