Display options
Share it on

Cancer Discov. 2021 Jul 08; doi: 10.1158/2159-8290.CD-21-0211. Epub 2021 Jul 08.

Cholesterol Auxotrophy as a Targetable Vulnerability in Clear Cell Renal Cell Carcinoma.

Cancer discovery

Romain Riscal, Caroline J Bull, Clementina Mesaros, Jennifer M Finan, Madeleine Carens, Elaine S Ho, Jimmy P Xu, Jason Godfrey, Paul Brennan, Mattias Johansson, Mark P Purdue, Stephen J Chanock, Daniela Mariosa, Nicholas J Timpson, Emma E Vincent, Brian Keith, Ian A Blair, Nicolas Skuli, M Celeste Simon

Affiliations

  1. Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
  2. MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom.
  3. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
  4. School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom.
  5. Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania.
  6. Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France.
  7. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
  8. Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland.
  9. The Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
  10. Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. [email protected].
  11. Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.

PMID: 34244212 PMCID: PMC8741905 DOI: 10.1158/2159-8290.CD-21-0211

Abstract

Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses based on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk. Depriving ccRCC cells of either cholesterol or HDL compromises proliferation and survival

©2021 American Association for Cancer Research.

References

  1. Biomark Insights. 2018 Feb 06;13:1177271918755391 - PubMed
  2. Nat Commun. 2017 Jun 15;8:15337 - PubMed
  3. Cell Metab. 2018 Jun 05;27(6):1263-1280.e6 - PubMed
  4. Cancer Metab. 2014 Nov 28;2:17 - PubMed
  5. Int J Epidemiol. 2019 Jun 1;48(3):907-911 - PubMed
  6. Cold Spring Harb Perspect Biol. 2011 Mar 01;3(3): - PubMed
  7. PLoS Genet. 2017 Nov 17;13(11):e1007081 - PubMed
  8. J Genet Genomics. 2015 Jul 20;42(7):343-53 - PubMed
  9. Cancer Res. 2002 Apr 15;62(8):2227-31 - PubMed
  10. CRISPR J. 2019 Aug;2:230-245 - PubMed
  11. Nature. 2019 Mar;567(7746):118-122 - PubMed
  12. Am J Epidemiol. 2018 Dec 1;187(12):2681-2685 - PubMed
  13. Cancer Discov. 2015 Jun;5(6):652-67 - PubMed
  14. Mol Metab. 2018 Aug;14:139-149 - PubMed
  15. Nat Rev Urol. 2010 May;7(5):277-85 - PubMed
  16. Nat Commun. 2019 Apr 8;10(1):1617 - PubMed
  17. J Lipid Res. 2008 May;49(5):1137-46 - PubMed
  18. Nature. 2014 Sep 11;513(7517):251-5 - PubMed
  19. Lancet. 2009 Mar 28;373(9669):1119-32 - PubMed
  20. Int J Epidemiol. 2003 Feb;32(1):1-22 - PubMed
  21. J Biol Chem. 2002 Oct 18;277(42):39541-7 - PubMed
  22. Cancer Cell. 2012 Mar 20;21(3):297-308 - PubMed
  23. Nat Rev Cancer. 2011 Dec 15;12(1):9-22 - PubMed
  24. Elife. 2018 May 30;7: - PubMed
  25. Clin Cancer Res. 2020 Feb 15;26(4):793-803 - PubMed
  26. PLoS Genet. 2017 Jul 17;13(7):e1006872 - PubMed
  27. Cell Metab. 2019 Jul 2;30(1):143-156.e5 - PubMed
  28. Liver Transpl. 2016 Mar;22(3):287-97 - PubMed
  29. Wellcome Open Res. 2017 Feb 14;2:11 - PubMed
  30. Oncogene. 2017 Nov 16;36(46):6462-6471 - PubMed
  31. Sci Rep. 2017 Feb 14;7:42691 - PubMed
  32. Exp Mol Med. 2016 Nov 4;48(11):e269 - PubMed
  33. Cell Metab. 2019 Jun 4;29(6):1376-1389.e4 - PubMed
  34. J Lipid Res. 1987 Oct;28(10):1177-84 - PubMed
  35. Int J Epidemiol. 2011 Jun;40(3):755-64 - PubMed
  36. Nat Genet. 2011 Jan;43(1):60-5 - PubMed
  37. Carcinogenesis. 2017 Aug 1;38(8):806-811 - PubMed
  38. PLoS One. 2009;4(4):e5044 - PubMed
  39. Curr Epidemiol Rep. 2018;5(3):214-220 - PubMed
  40. Arterioscler Thromb Vasc Biol. 2009 Dec;29(12):2054-60 - PubMed
  41. Cell. 2019 Oct 31;179(4):964-983.e31 - PubMed
  42. Oncogene. 2018 Oct;37(40):5435-5450 - PubMed
  43. Nat Genet. 2013 Aug;45(8):860-7 - PubMed
  44. BMC Cancer. 2018 Jan 22;18(1):88 - PubMed
  45. J Virol. 2010 Jan;84(1):34-43 - PubMed
  46. Nat Genet. 2012 Jan 29;44(3):269-76 - PubMed
  47. Cancer Cell. 2016 Nov 14;30(5):683-693 - PubMed
  48. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15422-7 - PubMed
  49. Handb Exp Pharmacol. 2015;224:229-56 - PubMed
  50. Int J Mol Sci. 2020 Jan 22;21(3): - PubMed
  51. J Hematol Oncol. 2020 Sep 30;13(1):129 - PubMed
  52. Annu Rev Physiol. 2018 Feb 10;80:95-116 - PubMed
  53. Cell Biol Toxicol. 2021 Aug;37(4):611-631 - PubMed
  54. Nat Rev Urol. 2011 May 17;8(6):321-33 - PubMed
  55. Mol Cancer Res. 2019 Sep;17(9):1881-1892 - PubMed
  56. Nat Commun. 2016 Mar 23;7:11122 - PubMed
  57. Urol Oncol. 2017 Sep;35(9):579-580 - PubMed
  58. J Biol Chem. 1997 May 16;272(20):13242-9 - PubMed
  59. Nature. 2015 Feb 12;518(7538):197-206 - PubMed
  60. Sci Adv. 2016 May 27;2(5):e1600200 - PubMed
  61. PLoS One. 2014 Sep 04;9(9):e106487 - PubMed
  62. Circ Res. 2006 Jan 6;98(1):63-72 - PubMed
  63. Nat Commun. 2017 Jun 09;8:15724 - PubMed

Publication Types

Grant support