Display options
Share it on

Cereb Cortex. 2021 May 10;31(6):2812-2821. doi: 10.1093/cercor/bhaa389.

Pubertal Testosterone and the Structure of the Cerebral Cortex in Young Men.

Cerebral cortex (New York, N.Y. : 1991)

Zhijie Liao, Yash Patel, Ammar Khairullah, Nadine Parker, Tomas Paus

Affiliations

  1. Department of Psychology, University of Toronto, Toronto, ON M5S3G3, Canada.
  2. Institute of Medical Sciences, University of Toronto, Toronto, ON M5S3G3, Canada.
  3. Department of Psychiatry, University of Toronto, Toronto, ON M5S3G3, Canada.

PMID: 33429422 PMCID: PMC8107791 DOI: 10.1093/cercor/bhaa389

Abstract

Adolescence is a period of brain maturation that may involve a second wave of organizational effects of sex steroids on the brain. Rodent studies suggest that, overall, organizational effects of gonadal steroid hormones decrease from the prenatal/perinatal period to adulthood. Here we used multimodal magnetic resonance imaging to investigate whether 1) testosterone exposure during adolescence (9-17 years) correlates with the structure of cerebral cortex in young men (n = 216, 19 years of age); 2) this relationship is modulated by the timing of testosterone surge during puberty. Our results showed that pubertal testosterone correlates with structural properties of the cerebral cortex, as captured by principal component analysis of T1 and T2 relaxation times, myelin water fraction, magnetization transfer ratio, fractional anisotropy and mean diffusivity. Many of the correlations between pubertal testosterone and the cortical structure were stronger in individuals with earlier (vs. later) testosterone surge. We also demonstrated that the strength of the relationship between pubertal testosterone and cortical structure across the cerebral cortex varies as a function of inter-regional profiles of gene expression specific to dendrites, axonal cytoskeleton, and myelin. This finding suggests that the cellular substrate underlying the relationships between pubertal testosterone and cerebral cortex involves both dendritic arbor and axon.

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected].

Keywords: ALSPAC; axon; dendrite; testosterone surge; two-stage model

References

  1. J Neurosci. 2008 Sep 17;28(38):9519-24 - PubMed
  2. Front Neuroanat. 2009 Sep 04;3:14 - PubMed
  3. Horm Behav. 2009 May;55(5):597-604 - PubMed
  4. Neuroimage. 2006 Jul 1;31(3):968-80 - PubMed
  5. J Clin Endocrinol Metab. 2001 Jun;86(6):2364-8 - PubMed
  6. Cereb Cortex. 2019 Jul 22;29(8):3351-3362 - PubMed
  7. Neuroimage. 2018 Nov 15;182:184-206 - PubMed
  8. Sci Rep. 2017 Aug 7;7(1):7397 - PubMed
  9. J Clin Endocrinol Metab. 2003 Jul;88(7):3064-8 - PubMed
  10. Neuroscience. 2014 Sep 12;276:117-25 - PubMed
  11. Psychoneuroendocrinology. 2009 Apr;34(3):332-42 - PubMed
  12. Neuroimage. 2017 May 15;152:108-118 - PubMed
  13. Magn Reson Med. 2008 Dec;60(6):1372-87 - PubMed
  14. J Neuroendocrinol. 2018 Feb;30(2): - PubMed
  15. Endocrinology. 1995 Aug;136(8):3213-21 - PubMed
  16. Int J Epidemiol. 2013 Feb;42(1):111-27 - PubMed
  17. J Neurobiol. 2003 Sep 5;56(3):293-302 - PubMed
  18. Int J Neuropsychopharmacol. 2009 Feb;12(1):137-9 - PubMed
  19. Horm Behav. 1976 Sep;7(3):267-82 - PubMed
  20. Endocrinology. 2009 Aug;150(8):3690-8 - PubMed
  21. Neuroimage. 2020 Sep;218:116968 - PubMed
  22. Nature. 2012 Sep 20;489(7416):391-399 - PubMed
  23. AJNR Am J Neuroradiol. 2004 Nov-Dec;25(10):1816-20 - PubMed
  24. Neurosci J. 2015;2015:525369 - PubMed
  25. Endocrinology. 2004 Jan;145(1):161-8 - PubMed
  26. Neuroimage. 2012 Aug 15;62(2):782-90 - PubMed
  27. Front Neurosci. 2015 Sep 16;9:323 - PubMed
  28. Biochem Biophys Res Commun. 1991 May 31;177(1):488-96 - PubMed
  29. Int J Epidemiol. 2013 Feb;42(1):97-110 - PubMed
  30. Hum Brain Mapp. 2014 Nov;35(11):5633-45 - PubMed
  31. Cereb Cortex. 2018 Sep 1;28(9):3267-3277 - PubMed
  32. Neurosci Res. 1998 Jul;31(3):227-34 - PubMed
  33. Philos Trans R Soc Lond B Biol Sci. 2009 Apr 12;364(1519):929-42 - PubMed
  34. J Steroid Biochem. 1982 Jun;16(6):801-10 - PubMed
  35. JAMA Psychiatry. 2020 Nov 1;77(11):1127-1136 - PubMed
  36. Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):163-74 - PubMed
  37. Hum Brain Mapp. 2019 May;40(7):2104-2116 - PubMed
  38. Brain Res. 1995 Oct 30;697(1-2):152-60 - PubMed
  39. PLoS Genet. 2017 Nov 6;13(11):e1007049 - PubMed
  40. Endocrinology. 1959 Sep;65:369-82 - PubMed
  41. PLoS One. 2014 Sep 30;9(9):e108838 - PubMed
  42. Neurotherapeutics. 2007 Jul;4(3):460-84 - PubMed
  43. Endocrinology. 1970 Nov;87(5):934-40 - PubMed
  44. Cereb Cortex. 2013 Jun;23(6):1424-32 - PubMed
  45. Mol Cell Endocrinol. 2006 Jul 25;254-255:120-6 - PubMed
  46. Elife. 2020 Oct 21;9: - PubMed
  47. J Neurosci. 2003 Mar 1;23(5):1588-92 - PubMed
  48. Neurosci Biobehav Rev. 2016 Nov;70:148-158 - PubMed
  49. PLoS One. 2012;7(3):e33850 - PubMed
  50. Neuroimage. 2018 Nov 15;182:389-397 - PubMed
  51. Biochem Biophys Res Commun. 2009 Apr 17;381(4):728-32 - PubMed
  52. Neuroscience. 2011 Sep 15;191:28-37 - PubMed
  53. Horm Behav. 2008 May;53(5):716-28 - PubMed
  54. Cereb Cortex. 2009 Feb;19(2):464-73 - PubMed
  55. Neuroimage. 2015 Jul 15;115:191-201 - PubMed
  56. Neuroimage. 2008 May 1;40(4):1575-80 - PubMed
  57. Horm Behav. 2010 Jan;57(1):63-75 - PubMed
  58. Brain Pathol. 2013 Jul;23(4):462-75 - PubMed
  59. J Neurosci. 1990 Mar;10(3):935-46 - PubMed

Publication Types

Grant support