Display options
Share it on

Nat Methods. 2022 Jan;19(1):111-118. doi: 10.1038/s41592-021-01334-w. Epub 2021 Dec 09.

Cross-modal coherent registration of whole mouse brains.

Nature methods

Lei Qu, Yuanyuan Li, Peng Xie, Lijuan Liu, Yimin Wang, Jun Wu, Yu Liu, Tao Wang, Longfei Li, Kaixuan Guo, Wan Wan, Lei Ouyang, Feng Xiong, Anna C Kolstad, Zhuhao Wu, Fang Xu, Yefeng Zheng, Hui Gong, Qingming Luo, Guoqiang Bi, Hongwei Dong, Michael Hawrylycz, Hongkui Zeng, Hanchuan Peng

Affiliations

  1. Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, China.
  2. SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China.
  3. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
  4. Ministry of Education Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
  5. School of Computer Engineering and Science, Shanghai University, Shanghai, China.
  6. Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  7. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  8. CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
  9. Tencent Jarvis Lab, Shenzhen, Guangdong, China.
  10. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
  11. HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.
  12. CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China.
  13. School of Biomedical Engineering, Hainan University, Haikou, China.
  14. Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, China.
  15. Center for Integrative Connectomics, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  16. Allen Institute for Brain Science, Seattle, WA, USA.
  17. SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China. [email protected].
  18. Allen Institute for Brain Science, Seattle, WA, USA. [email protected].

PMID: 34887551 DOI: 10.1038/s41592-021-01334-w

Abstract

Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these multi-dimensional whole-brain images onto a standard atlas is essential for characterizing neuron types and constructing brain wiring diagrams. However, cross-modal image registration is challenging due to intrinsic variations of brain anatomy and artifacts resulting from different sample preparation methods and imaging modalities. We introduce a cross-modal registration method, mBrainAligner, which uses coherent landmark mapping and deep neural networks to align whole mouse brain images to the standard Allen Common Coordinate Framework atlas. We build a brain atlas for the fluorescence micro-optical sectioning tomography modality to facilitate single-cell mapping, and used our method to generate a whole-brain map of three-dimensional single-neuron morphology and neuron cell types.

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

References

  1. Gong, H. et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat. Commun. 7, 1–12 (2016). - PubMed
  2. Economo, M. N. et al. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566 (2016). - PubMed
  3. Osten, P. & Margrie, T. W. Mapping brain circuitry with a light microscope. Nat. Methods 10, 515–523 (2013). - PubMed
  4. Ragan, T. et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012). - PubMed
  5. Wang, H. et al. Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. Natl Sci. Rev. 6, 982–992 (2019). - PubMed
  6. Xu, F. et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00986-5 (2021). - PubMed
  7. Niedworok, C. J. et al. Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell Rep. 2, 1375–1386 (2012). - PubMed
  8. Dodt, H.-U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007). - PubMed
  9. Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S. & Deisseroth, K. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013). - PubMed
  10. Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014). - PubMed
  11. Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015). - PubMed
  12. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014). - PubMed
  13. Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016). - PubMed
  14. Susaki, E. A. et al. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10, 1709–1727 (2015). - PubMed
  15. Richardson, D. S. & Lichtman, J. W. Clarifying tissue clearing. Cell 162, 246–257 (2015). - PubMed
  16. Thomas, R., Smallwood, P. M., John, W., Jeremy, N. & Eshel, B. J. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PLoS One 3, e4099 (2008). - PubMed
  17. Aransay, A., Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front. Neuroanat. 9, 59 (2015). - PubMed
  18. Ghosh, S. et al. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 472, 217–220 (2011). - PubMed
  19. Lin, R. et al. Cell-type-specific and projection-specific brain-wide reconstruction of single neurons. Nat. Methods 15, 1033–1036 (2018). - PubMed
  20. Wang, Y. et al. TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nat. Commun. 10, 3474 (2019). - PubMed
  21. Winnubst, J. et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179, 268–281.e213 (2019). - PubMed
  22. Zhou, H. et al. GTree: an Open-source tool for dense reconstruction of brain-wide neuronal population. Neuroinformatics 19, 305–317 (2020). - PubMed
  23. Peng, H. et al. BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87, 252–256 (2015). - PubMed
  24. Ecker, J. R. et al. The BRAIN initiative cell census consortium: Lessons learned toward generating a comprehensive brain cell atlas. Neuron 96, 542–557 (2017). - PubMed
  25. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014). - PubMed
  26. Zingg, B., Hintiryan, H., Gou, L., Song, M. Y. & Dong, H.-W. Neural Networks of the Mouse Neocortex. Cell 156, 1096–1111 (2014). - PubMed
  27. Hintiryan, H. et al. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100–1114 (2016). - PubMed
  28. Bienkowski, M. S. et al. Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat. Neurosci. 21, 1628–1643 (2018). - PubMed
  29. Dong, H. W. The Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse (John Wiley & Sons Inc., 2008). - PubMed
  30. Wang, Q. et al. The Allen mouse brain common coordinate framework: a 3D reference atlas. Cell 181, 936–953.e920 (2020). - PubMed
  31. Perens, J. et al. An optimized mouse brain atlas for automated mapping and quantification of neuronal activity using iDISCO+ and light sheet fluorescence microscopy. Neuroinformatics 19, 433–446 (2020). - PubMed
  32. Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature 598, 174–181 (2021). - PubMed
  33. Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat. Methods 6, 667–672 (2009). - PubMed
  34. Peng, H. et al. BrainAligner: 3D registration atlases of Drosophila brains. Nat. Methods 8, 493–500 (2011). - PubMed
  35. Randlett, O. et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12, 1039–1046 (2015). - PubMed
  36. Griffiths, V. A. et al. Real-time 3D movement correction for two-photon imaging in behaving animals. Nat. Methods 17, 741–748 (2020). - PubMed
  37. Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTS). Insight J. 2, 1–35 (2009). - PubMed
  38. Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2009). - PubMed
  39. Modat, M. et al. Fast free-form deformation using graphics processing units. Computer Methods Prog. Biomedicine 98, 278–284 (2010). - PubMed
  40. Niedworok, C. J. et al. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data. Nat. Commun. 7, 1–9 (2016). - PubMed
  41. Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016). - PubMed
  42. Goubran, M. et al. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat. Commun. 10, 1–17 (2019). - PubMed
  43. Fan, J., Cao, X., Yap, P.-T. & Shen, D. BIRNet: brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 54, 193–206 (2019). - PubMed
  44. Cao, X., Yang, J., Zhang, J., Nie, D., Kim, M., Wang, Q., & Shen, D. Deformable image registration based on similarity-steered CNN regression. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (eds. Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S.) 300–308 (Springer, Cham, 2017). - PubMed
  45. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017). - PubMed
  46. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019). - PubMed
  47. Muñoz-Castaneda, R. et al. Cellular anatomy of the mouse primary motor cortex. Nature 598, 159–166 (2021). - PubMed
  48. Jones, E. G. The Thalamus (Springer Science & Business Media, 2012). - PubMed
  49. Tward, D. J. et al. Solving the where problem in neuroanatomy: a generative framework with learned mappings to register multimodal, incomplete data into a reference brain. Preprint at bioRxiv https://doi.org/10.1101/2020.03.22.002618 (2020). - PubMed
  50. Ramon y Cajal, S. Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris 2, 153–173 (1911). - PubMed
  51. Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010). - PubMed
  52. Chi, J. et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 27, 226–236.e223 (2018). - PubMed
  53. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (2007). - PubMed
  54. HL, C. & Rangarajan, A. A new point matching algorithm for non-rigid registration. Computer Vis. Image Underst. 89, 114–141 (2003). - PubMed
  55. Harris, C. G. & Stephens, M. A combined corner and edge detector. in Proc. Alvey Vision Conference Vol. 15, 10–5244 (Citeseer, 1988). - PubMed
  56. Wahba, G. Spline Models for Observational Data (SIAM, 1990). - PubMed
  57. Qu, L. & Peng, H. Littlequickwarp: an ultrafast image warping tool. Methods 73, 38–42 (2015). - PubMed
  58. Dalal, N. & Triggs, B. Histograms of oriented gradients for human detection. In Proc. Computer Society Conference on Computer Vision and Pattern Recognition Vol. 1 886–893 (IEEE, 2005). - PubMed
  59. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In Proc. International Conference on Medical Image Computing and Computer-assisted Intervention (eds. Ourselin S., Joskowicz L., Sabuncu M., Unal G., Wells W) 424–432 (Springer, 2016). - PubMed
  60. Fürth, D. et al. An interactive framework for whole-brain maps at cellular resolution. Nat. Neurosci. 21, 139–149 (2018). - PubMed
  61. Mortensen, E. N. & Barrett, W. A. Intelligent scissors for image composition. In Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques 191–198 (ACM TOG, 1995). - PubMed

Publication Types

Grant support