Display options
Share it on

Clin Pharmacol Ther. 2022 Feb;111(2):496-508. doi: 10.1002/cpt.2458. Epub 2021 Nov 21.

Physiologically-Based Pharmacokinetic Modeling to Investigate the Effect of Maturation on Buprenorphine Pharmacokinetics in Newborns with Neonatal Opioid Withdrawal Syndrome.

Clinical pharmacology and therapeutics

Matthijs W van Hoogdalem, Trevor N Johnson, Brooks T McPhail, Suyog Kamatkar, Scott L Wexelblatt, Laura P Ward, Uwe Christians, Henry T Akinbi, Alexander A Vinks, Tomoyuki Mizuno

Affiliations

  1. Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  2. James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.
  3. Certara UK Limited, Sheffield, UK.
  4. School of Medicine Greenville, University of South Carolina, Greenville, South Carolina, USA.
  5. Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
  6. Community Hospital East, Indianapolis, Indiana, USA.
  7. Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
  8. Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
  9. iC42 Clinical Research and Development, University of Colorado, Aurora, Colorado, USA.

PMID: 34679189 PMCID: PMC8748288 DOI: 10.1002/cpt.2458

Abstract

Neonatal opioid withdrawal syndrome (NOWS) is a major public health concern whose incidence has paralleled the opioid epidemic in the United States. Sublingual buprenorphine is an emerging treatment for NOWS, but given concerns about long-term adverse effects of perinatal opioid exposure, precision dosing of buprenorphine is needed. Buprenorphine pharmacokinetics (PK) in newborns, however, is highly variable. To evaluate underlying sources of PK variability, a neonatal physiologically-based pharmacokinetic (PBPK) model of sublingual buprenorphine was developed using Simcyp (version 19.1). The PBPK model included metabolism by cytochrome P450 (CYP) 3A4, CYP2C8, UDP-glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT2B7, and UGT2B17, with additional biliary excretion. Maturation of metabolizing enzymes was incorporated, and default CYP2C8 and UGT2B7 ontogeny profiles were updated according to recent literature. A biliary clearance developmental profile was outlined using clinical data from neonates receiving sublingual buprenorphine as NOWS treatment. Extensive PBPK model validation in adults demonstrated good predictability, with geometric mean (95% confidence interval (CI)) predicted/observed ratios (P/O ratios) of area under the curve from zero to infinity (AUC

© 2021 The Authors. Clinical Pharmacology & Therapeutics © 2021 American Society for Clinical Pharmacology and Therapeutics.

References

  1. Pain Med. 2019 Jan 1;20(1):143-152 - PubMed
  2. Front Pharmacol. 2020 May 13;11:587 - PubMed
  3. Pharmacol Ther. 2020 Jul;211:107541 - PubMed
  4. Clin Pharmacokinet. 2005;44(7):661-80 - PubMed
  5. Nutrition. 1998 Jan;14(1):153-7 - PubMed
  6. Pediatrics. 2012 Feb;129(2):e540-60 - PubMed
  7. Xenobiotica. 1981 Mar;11(3):189-96 - PubMed
  8. J Clin Pharmacol. 2016 Mar;56(3):266-83 - PubMed
  9. Clin Pharmacol Ther. 1994 May;55(5):569-80 - PubMed
  10. Clin Pharmacol Ther. 2019 Jan;105(1):131-141 - PubMed
  11. Pharmaceutics. 2020 Jun 23;12(6): - PubMed
  12. Br J Clin Pharmacol. 1982 May;13(5):665-73 - PubMed
  13. Br J Clin Pharmacol. 1993 Sep;36(3):215-9 - PubMed
  14. Clin Pharmacokinet. 2021 Feb;60(2):249-259 - PubMed
  15. Drug Metab Lett. 2009 Apr;3(2):101-7 - PubMed
  16. Clin Pharmacokinet. 2004;43(5):329-40 - PubMed
  17. Drug Alcohol Depend. 2003 Oct 24;72(1):75-83 - PubMed
  18. Adv Drug Deliv Rev. 2014 Jun;73:50-62 - PubMed
  19. Br J Clin Pharmacol. 1989 Aug;28(2):202-4 - PubMed
  20. J Clin Pharmacol. 1997 Jan;37(1):31-7 - PubMed
  21. JAMA. 2021 Jan 12;325(2):146-155 - PubMed
  22. Br J Clin Pharmacol. 1981 Aug;12(2):117-22 - PubMed
  23. Clin Ther. 2016 Feb;38(2):358-69 - PubMed
  24. Drug Alcohol Depend. 2013 Aug 1;131(3):258-62 - PubMed
  25. Br J Clin Pharmacol. 2017 Nov;83(11):2458-2473 - PubMed
  26. Drugs R D. 2019 Sep;19(3):255-265 - PubMed
  27. Pharmacotherapy. 2015 Jul;35(7):670-80 - PubMed
  28. Br J Clin Pharmacol. 2018 Mar;84(3):462-476 - PubMed
  29. MMWR Morb Mortal Wkly Rep. 2020 Jul 17;69(28):897-903 - PubMed
  30. Expert Opin Drug Metab Toxicol. 2021 Jan;17(1):87-103 - PubMed
  31. J Clin Pharmacol. 1999 Jun;39(6):619-23 - PubMed
  32. J Clin Pharmacol. 2006 Feb;46(2):179-92 - PubMed
  33. NCHS Data Brief. 2020 Dec;(394):1-8 - PubMed
  34. Clin Pharmacol Ther. 1980 Nov;28(5):667-72 - PubMed
  35. Br J Clin Pharmacol. 2015 Jan;79(1):48-55 - PubMed
  36. Ther Drug Monit. 2010 Apr;32(2):206-15 - PubMed
  37. Drug Metab Dispos. 2005 May;33(5):689-95 - PubMed
  38. Clin Pharmacokinet. 2014 Jul;53(7):625-36 - PubMed
  39. JAMA. 2018 Apr 3;319(13):1362-1374 - PubMed
  40. J Pharm Sci. 2009 Dec;98(12):4928-40 - PubMed
  41. Pharm Res. 2009 May;26(5):1073-83 - PubMed
  42. Biol Neonate. 1997;72(4):235-42 - PubMed
  43. J Pediatr. 2000 Oct;137(4):545-8 - PubMed
  44. JAMA. 2020 Oct 27;324(16):1615-1617 - PubMed
  45. J Anal Toxicol. 1996 Oct;20(6):369-78 - PubMed
  46. Drug Metab Dispos. 2016 Jul;44(7):1090-8 - PubMed
  47. J Clin Pharmacol. 2010 Dec;50(12):1377-87 - PubMed
  48. J Perinatol. 2021 Jun;41(6):1213-1215 - PubMed
  49. J Med Chem. 1996 Oct 25;39(22):4377-81 - PubMed
  50. Clin Pharmacol Ther. 2018 Jun;103(6):1029-1037 - PubMed
  51. Drug Metab Dispos. 2017 May;45(5):468-475 - PubMed
  52. Drug Alcohol Depend. 1999 Aug 2;56(1):55-60 - PubMed
  53. World J Gastroenterol. 2009 Feb 21;15(7):817-28 - PubMed

Publication Types

Grant support