Display options
Share it on

PeerJ. 2016 Nov 03;4:e2660. doi: 10.7717/peerj.2660. eCollection 2016.

Salivary microbiomes of indigenous Tsimane mothers and infants are distinct despite frequent premastication.

PeerJ

Cliff S Han, Melanie Ann Martin, Armand E K Dichosa, Ashlynn R Daughton, Seth Frietze, Hillard Kaplan, Michael D Gurven, Joe Alcock

Affiliations

  1. Bioscience Division, Los Alamos National LaborataoryLos Alamos, NM, USA.
  2. Department of Anthropology, Yale University, New Haven, CA, USA.
  3. Analytics, Intelligence and Technology (A) Division, Los Alamos National Laborataory, Los Alamos, NM, USA.
  4. Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT, USA.
  5. Department of Anthropology, University of New Mexico, Albuquerque, NM, USA.
  6. Department of Anthropology, University of California, Santa BarbaraSanta Barbara, CA, USA.
  7. Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA.

PMID: 27833819 PMCID: PMC5101600 DOI: 10.7717/peerj.2660

Abstract

BACKGROUND: Premastication, the transfer of pre-chewed food, is a common infant and young child feeding practice among the Tsimane, forager-horticulturalists living in the Bolivian Amazon. Research conducted primarily with Western populations has shown that infants harbor distinct oral microbiota from their mothers. Premastication, which is less common in these populations, may influence the colonization and maturation of infant oral microbiota, including via transmission of oral pathogens. We collected premasticated food and saliva samples from Tsimane mothers and infants (9-24 months of age) to test for evidence of bacterial transmission in premasticated foods and overlap in maternal and infant salivary microbiota. We extracted bacterial DNA from two premasticated food samples and 12 matched salivary samples from maternal-infant pairs. DNA sequencing was performed with MiSeq (Illumina). We evaluated maternal and infant microbial composition in terms of relative abundance of specific taxa, alpha and beta diversity, and dissimilarity distances.

RESULTS: The bacteria in saliva and premasticated food were mapped to 19 phyla and 400 genera and were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The oral microbial communities of Tsimane mothers and infants who frequently share premasticated food were well-separated in a non-metric multi-dimensional scaling ordination (NMDS) plot. Infant microbiotas clustered together, with weighted Unifrac distances significantly differing between mothers and infants. Infant saliva contained more Firmicutes (

CONCLUSIONS: Salivary microbiota of Tsimane infants and young children up to two years of age do not appear closely related to those of their mothers, despite frequent premastication and preliminary evidence that maternal bacteria is transmitted to premasticated foods. Infant physiology and diet may constrain colonization by maternal bacteria, including several oral pathogens.

Keywords: Gingivitis; Infant microbial development; Kinship; Microbe sharing; Microbial diversity; Oral disease; Oral microbiota; Premastication; Vertical transmission

Conflict of interest statement

The authors declare there are no competing interests.

References

  1. Genome Res. 2012 Nov;22(11):2146-52 - PubMed
  2. Elife. 2013 Apr 16;2:e00458 - PubMed
  3. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971-5 - PubMed
  4. Arch Oral Biol. 1981;26(2):147-9 - PubMed
  5. PLoS Biol. 2007 Jul;5(7):e177 - PubMed
  6. PLoS One. 2012;7(10):e47722 - PubMed
  7. ISME J. 2011 Feb;5(2):169-72 - PubMed
  8. PLoS One. 2015 Sep 01;10(9):e0135047 - PubMed
  9. Acta Paediatr. 2015 Dec;104(467):62-84 - PubMed
  10. J Pediatr. 1992 Apr;120(4 Pt 1):563-4 - PubMed
  11. J Dent Res. 2001 Oct;80(10):1945-8 - PubMed
  12. PLoS One. 2013 Jul 03;8(7):e67699 - PubMed
  13. Am J Hum Biol. 2007 May-Jun;19(3):376-98 - PubMed
  14. Nature. 2012 May 09;486(7402):222-7 - PubMed
  15. Infect Immun. 1994 Jun;62(6):2165-8 - PubMed
  16. Dent Res J (Isfahan). 2014 May;11(3):291-301 - PubMed
  17. Microb Ecol. 2014 May;67(4):962-9 - PubMed
  18. J Periodontol. 1991 Sep;62(9):543-7 - PubMed
  19. Pediatrics. 2011 Sep;128(3):e579-90 - PubMed
  20. BMC Microbiol. 2009 Dec 15;9:259 - PubMed
  21. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 - PubMed
  22. Oral Microbiol Immunol. 2002 Dec;17(6):379-87 - PubMed
  23. BMC Med Genomics. 2011 Mar 04;4:22 - PubMed
  24. PLoS One. 2011;6(12):e27310 - PubMed
  25. Caries Res. 2010;44(5):485-97 - PubMed
  26. Pediatrics. 2013 Jun;131(6):e1829-37 - PubMed
  27. Matern Child Nutr. 2012 Jul;8(3):404-18 - PubMed
  28. PLoS Biol. 2013;11(8):e1001631 - PubMed
  29. Oral Dis. 2012 Sep;18(6):595-601 - PubMed
  30. J Clin Microbiol. 2005 Nov;43(11):5721-32 - PubMed
  31. Anaerobe. 2008 Jun;14(3):131-7 - PubMed
  32. Acta Odontol Latinoam. 2010;23(1):20-6 - PubMed
  33. Biometrics. 2001 Sep;57(3):743-9 - PubMed
  34. J Clin Microbiol. 2004 Oct;42(10):4620-6 - PubMed
  35. Soc Sci Med. 2014 Jan;100:148-58 - PubMed
  36. J Dent Res. 2002 Jan;81(1):53-7 - PubMed
  37. J Am Dent Assoc. 2013 Feb;144(2):143-51 - PubMed
  38. Microbiome. 2014 Nov 17;2:41 - PubMed
  39. BMC Res Notes. 2014 Nov 24;7:830 - PubMed
  40. Matern Child Nutr. 2010 Jan;6(1):4-18 - PubMed
  41. J Prosthet Dent. 2001 Feb;85(2):162-9 - PubMed
  42. Int J Paediatr Dent. 2009 May;19(3):193-200 - PubMed
  43. J Dent Res. 1993 Jan;72(1):37-45 - PubMed
  44. Database (Oxford). 2010 Jul 06;2010:baq013 - PubMed
  45. J Pediatr Gastroenterol Nutr. 2013 Feb;56(2):127-36 - PubMed
  46. Nat Methods. 2013 Dec;10(12):1200-2 - PubMed
  47. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  48. Pediatrics. 2009 Aug;124(2):658-66 - PubMed
  49. Arch Microbiol. 2013 Jun;195(6):371-83 - PubMed
  50. Matern Child Nutr. 2016 Jul;12(3):625-31 - PubMed
  51. Evid Based Dent. 2008;9(3):86-8 - PubMed
  52. PLoS One. 2011;6(8):e23503 - PubMed
  53. J Clin Invest. 1991 Oct;88(4):1080-91 - PubMed

Publication Types

Grant support