Display options
Share it on

Alzheimers Res Ther. 2015 Mar 02;7(1):8. doi: 10.1186/s13195-014-0093-y. eCollection 2015.

Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography.

Alzheimer's research & therapy

Sharon J Sha, Pia M Ghosh, Suzee E Lee, Chiara Corbetta-Rastelli, Willian J Jagust, John Kornak, Katherine P Rankin, Lea T Grinberg, Harry V Vinters, Mario F Mendez, Dennis W Dickson, William W Seeley, Marilu Gorno-Tempini, Joel Kramer, Bruce L Miller, Adam L Boxer, Gil D Rabinovici

Affiliations

  1. Department of Neurology and Neurological Sciences, Stanford University, 300 Pasteur Drive, Rm A343, Stanford, CA 94305 USA.
  2. Department of Neurology, University of California, San Francisco, San Francisco, CA USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA.
  3. Department of Neurology, University of California, San Francisco, San Francisco, CA USA.
  4. Department of Neurology, University of California, San Francisco, San Francisco, CA USA ; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA ; Lawrence Berkeley National Laboratory, Berkeley, CA USA.
  5. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA USA.
  6. Department of Neurology, University of California, Los Angeles, CA USA ; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA USA.
  7. Department of Neurology, University of California, Los Angeles, CA USA.
  8. Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL USA.

PMID: 25733984 PMCID: PMC4346122 DOI: 10.1186/s13195-014-0093-y

Abstract

INTRODUCTION: Group comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer's disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer's disease neuropathology) in patients presenting with CBS.

METHODS: In total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal).

RESULTS: A total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen's kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD).

CONCLUSIONS: Splitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD.

References

  1. Brain. 2007 Oct;130(Pt 10):2616-35 - PubMed
  2. Arch Neurol. 2006 Jan;63(1):81-6 - PubMed
  3. Neurobiol Aging. 1997 Jul-Aug;18(4 Suppl):S1-2 - PubMed
  4. Mov Disord. 2009 Jul 15;24(9):1375-9 - PubMed
  5. Arch Neurol. 1968 Jan;18(1):20-33 - PubMed
  6. Neurology. 2002 Jan 22;58(2):198-208 - PubMed
  7. Int J Alzheimers Dis. 2011;2011:546871 - PubMed
  8. Neuroradiology. 2007 Nov;49(11):905-12 - PubMed
  9. Brain. 2009 May;132(Pt 5):1310-23 - PubMed
  10. Neurology. 2011 Mar 15;76(11):1006-14 - PubMed
  11. Neurology. 2010 Nov 23;75(21):1879-87 - PubMed
  12. Neurology. 1990 Aug;40(8):1203-12 - PubMed
  13. Neurology. 1999 Sep 11;53(4):795-800 - PubMed
  14. Ann Neurol. 2011 Aug;70(2):327-40 - PubMed
  15. Alzheimers Dement. 2011 May;7(3):263-9 - PubMed
  16. Mov Disord. 2009 Aug 15;24(11):1593-9 - PubMed
  17. J Neurol Neurosurg Psychiatry. 2012 Apr;83(4):405-10 - PubMed
  18. Neurology. 2013 Jan 29;80(5):496-503 - PubMed
  19. Brain. 2007 Oct;130(Pt 10):2636-45 - PubMed
  20. Mov Disord. 2006 Nov;21(11):2018-22 - PubMed
  21. PLoS One. 2013;8(4):e61025 - PubMed
  22. Neuroradiology. 2003 Oct;45(10):708-12 - PubMed
  23. Prog Neurobiol. 2011 Dec;95(4):649-62 - PubMed
  24. Neurology. 2011 Dec 6;77(23 ):2034-42 - PubMed
  25. Brain. 1989 Oct;112 ( Pt 5):1171-92 - PubMed
  26. Ann Neurol. 2004 Mar;55(3):306-19 - PubMed
  27. J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47 - PubMed
  28. Brain Behav Immun. 2012 Jan;26(1):103-8 - PubMed
  29. Alzheimers Res Ther. 2011 Nov 10;3(6):31 - PubMed
  30. Neuroimage. 2002 Jan;15(1):273-89 - PubMed
  31. Neuron. 2009 Apr 16;62(1):42-52 - PubMed
  32. J Neuropathol Exp Neurol. 2002 Nov;61(11):935-46 - PubMed
  33. Neuron. 2013 Sep 18;79(6):1094-108 - PubMed
  34. Brain. 2013 Mar;136(Pt 3):844-58 - PubMed
  35. J Neurol Sci. 2003 Dec 15;216(1):127-34 - PubMed
  36. J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 - PubMed
  37. Mov Disord. 2010 Jul 15;25(9):1246-52 - PubMed
  38. Neurology. 2005 Dec 27;65(12):1863-72 - PubMed

Publication Types

Grant support