Display options
Share it on

Sci Rep. 2016 Mar 15;6:23119. doi: 10.1038/srep23119.

Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition.

Scientific reports

Mengmeng Yang, Yuanjun Yang, Bin Hong, Liangxin Wang, Kai Hu, Yongqi Dong, Han Xu, Haoliang Huang, Jiangtao Zhao, Haiping Chen, Li Song, Huanxin Ju, Junfa Zhu, Jun Bao, Xiaoguang Li, Yueliang Gu, Tieying Yang, Xingyu Gao, Zhenlin Luo, Chen Gao

Affiliations

  1. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China.
  2. Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, China.
  3. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
  4. Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  5. Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.

PMID: 26975328 PMCID: PMC4792152 DOI: 10.1038/srep23119

Abstract

Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

References

  1. Nano Lett. 2010 Nov 10;10(11):4409-16 - PubMed
  2. Nano Lett. 2006 Oct;6(10):2313-7 - PubMed
  3. Sci Rep. 2013 Oct 24;3:3029 - PubMed
  4. Phys Rev Lett. 2010 Nov 26;105(22):226405 - PubMed
  5. Phys Rev Lett. 2014 Nov 21;113(21):216401 - PubMed
  6. Nano Lett. 2014 Nov 12;14(11):6115-20 - PubMed
  7. ACS Nano. 2014 Jun 24;8(6):5784-9 - PubMed
  8. Phys Rev Lett. 2012 Jun 22;108(25):256402 - PubMed
  9. Adv Mater. 2014 Nov 26;26(44):7505-9 - PubMed
  10. Sci Rep. 2015 May 07;5:9328 - PubMed
  11. Phys Rev Lett. 2006 Dec 31;97(26):266401 - PubMed
  12. Phys Rev Lett. 2009 Aug 21;103(8):086402 - PubMed
  13. Nanoscale. 2012 Nov 21;4(22):7056-62 - PubMed
  14. Science. 2009 Sep 18;325(5947):1518-21 - PubMed
  15. Phys Rev Lett. 2006 Sep 15;97(11):116402 - PubMed
  16. Sci Rep. 2015 Nov 04;5:16012 - PubMed
  17. Science. 2014 Oct 24;346(6208):445-8 - PubMed
  18. Nano Lett. 2013 Oct 9;13(10):4857-61 - PubMed
  19. Phys Rev Lett. 2013 Aug 30;111(9):096602 - PubMed
  20. Science. 2013 Mar 22;339(6126):1402-5 - PubMed
  21. Nano Lett. 2010 Jun 9;10(6):2064-8 - PubMed
  22. Nano Lett. 2014 Jul 9;14(7):4036-43 - PubMed
  23. Phys Rev Lett. 2014 Nov 21;113(21):216402 - PubMed
  24. Science. 2007 Dec 14;318(5857):1750-3 - PubMed
  25. Sci Rep. 2015 Oct 07;5:15020 - PubMed
  26. Opt Lett. 2011 May 15;36(10):1927-9 - PubMed
  27. Nanoscale. 2014 Jul 21;6(14):8068-74 - PubMed

Publication Types