Display options
Share it on

Mol Metab. 2016 Apr 23;5(7):506-526. doi: 10.1016/j.molmet.2016.04.005. eCollection 2016 Jul.

Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation.

Molecular metabolism

Amy R Johnson, Yuanyuan Qin, Alyssa J Cozzo, Alex J Freemerman, Megan J Huang, Liyang Zhao, Brante P Sampey, J Justin Milner, Melinda A Beck, Blossom Damania, Naim Rashid, Joseph A Galanko, Douglas P Lee, Matthew L Edin, Darryl C Zeldin, Patrick T Fueger, Brittney Dietz, Andreas Stahl, Ying Wu, Karen L Mohlke, Liza Makowski

Affiliations

  1. Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  2. Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Nutrition Obesity Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  3. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  4. Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  5. Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Nutrition Obesity Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  6. Omic Insight, Inc., Durham, NC 27713, USA.
  7. Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
  8. Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Departments of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
  9. Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA.
  10. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  11. Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Nutrition Obesity Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: [email protected].

PMID: 27408776 PMCID: PMC4921943 DOI: 10.1016/j.molmet.2016.04.005

Abstract

OBJECTIVE: A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages (MΦs). Broadly speaking, MΦs dependent on glucose are pro-inflammatory, classically activated MΦs (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, MΦs that primarily metabolize fatty acids are alternatively activated MΦs (AAM) and maintain tissue insulin sensitivity. In actuality, there is much flexibility and overlap in the CAM-AAM spectrum in vivo dependent upon various stimuli in the microenvironment. We hypothesized that specific lipid trafficking proteins, e.g. fatty acid transport protein 1 (FATP1), would direct MΦ fatty acid transport and metabolism to limit inflammation and contribute to the maintenance of adipose tissue homeostasis.

METHODS: Bone marrow derived MΦs (BMDMs) from Fatp1 (-/-) and Fatp1 (+/+) mice were used to investigate FATP1-dependent substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. We also generated C57BL/6J chimeric mice by bone marrow transplant specifically lacking hematopoetic FATP1 (Fatp1 (B-/-)) and controls Fatp1 (B+/+). Mice were challenged by high fat diet (HFD) or low fat diet (LFD) and analyses including MRI, glucose and insulin tolerance tests, flow cytometric, histologic, and protein quantification assays were conducted. Finally, an FATP1-overexpressing RAW 264.7 MΦ cell line (FATP1-OE) and empty vector control (FATP1-EV) were developed as a gain of function model to test effects on substrate metabolism, bioenergetics, metabolomics, and inflammatory responses.

RESULTS: Fatp1 is downregulated with pro-inflammatory stimulation of MΦs. Fatp1 (-/-) BMDMs and FATP1-OE RAW 264.7 MΦs demonstrated that FATP1 reciprocally controled metabolic flexibility, i.e. lipid and glucose metabolism, which was associated with inflammatory response. Supporting our previous work demonstrating the positive relationship between glucose metabolism and inflammation, loss of FATP1 enhanced glucose metabolism and exaggerated the pro-inflammatory CAM phenotype. Fatp1 (B-/-) chimeras fed a HFD gained more epididymal white adipose mass, which was inflamed and oxidatively stressed, compared to HFD-fed Fatp1 (B+/+) controls. Adipose tissue macrophages displayed a CAM-like phenotype in the absence of Fatp1. Conversely, functional overexpression of FATP1 decreased many aspects of glucose metabolism and diminished CAM-stimulated inflammation in vitro. FATP1 displayed acyl-CoA synthetase activity for long chain fatty acids in MΦs and modulated lipid mediator metabolism in MΦs.

CONCLUSION: Our findings provide evidence that FATP1 is a novel regulator of MΦ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1 (B-/-) mice. In contrast, gain of FATP1 activity in MΦs suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated.

Keywords: Adipose tissue macrophage; Crown-like structures; Glycolysis; M2 macrophage; Mitochondria; Obesity

References

  1. Toxicol Appl Pharmacol. 1997 Sep;146(1):53-9 - PubMed
  2. Nat Rev Drug Discov. 2014 Jun;13(6):465-76 - PubMed
  3. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11818-23 - PubMed
  4. J Clin Invest. 2011 Oct;121(10 ):4138-49 - PubMed
  5. Diabetes. 2012 Nov;61(11):2718-27 - PubMed
  6. J Biol Chem. 2006 Dec 1;281(48):37246-55 - PubMed
  7. J Cell Biol. 2012 Sep 3;198(5):895-911 - PubMed
  8. J Hypertens. 2012 Jul;30(7):1440-3 - PubMed
  9. Nat Genet. 2012 Oct;44(10):1084-9 - PubMed
  10. J Clin Endocrinol Metab. 2011 Jan;96(1):E146-50 - PubMed
  11. Immunity. 2013 Sep 19;39(3):432-41 - PubMed
  12. Nat Immunol. 2014 Sep;15(9):846-55 - PubMed
  13. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1330-4 - PubMed
  14. J Membr Biol. 1996 Sep;153(1):75-81 - PubMed
  15. Blood. 2012 Aug 16;120(7):1422-31 - PubMed
  16. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E715-24 - PubMed
  17. FASEB J. 2010 Nov;24(11):4229-39 - PubMed
  18. Br J Clin Pharmacol. 2013 Aug;76(2):263-8 - PubMed
  19. J Immunol. 2013 Sep 1;191(5):2474-85 - PubMed
  20. Breast Cancer Res Treat. 2013 Dec;142(3):489-503 - PubMed
  21. J Exp Med. 2015 Aug 24;212(9):1345-60 - PubMed
  22. Arthritis Care Res (Hoboken). 2012 Feb;64(2):215-21 - PubMed
  23. Epigenomics. 2015 Oct;7(7):1155-64 - PubMed
  24. Am J Physiol Endocrinol Metab. 2014 Aug 15;307(4):E374-83 - PubMed
  25. Biochim Biophys Acta. 2006 Mar;1760(3):380-7 - PubMed
  26. Mol Cell. 1999 Sep;4(3):299-308 - PubMed
  27. Cell. 1998 Apr 17;93(2):229-40 - PubMed
  28. Cell Metab. 2014 Oct 7;20(4):614-25 - PubMed
  29. Mol Biosyst. 2011 Aug;7(8):2397-406 - PubMed
  30. Physiol Rev. 2013 Jan;93(1):1-21 - PubMed
  31. Nat Immunol. 2012 Nov;13(11):1118-28 - PubMed
  32. Anal Biochem. 2003 Feb 1;313(1):28-33 - PubMed
  33. J Biol Chem. 2014 Mar 14;289(11):7884-96 - PubMed
  34. Genome Biol. 2009;10(11):R130 - PubMed
  35. Annu Rev Immunol. 2014;32:609-34 - PubMed
  36. Cell Metab. 2013 Dec 3;18(6):816-30 - PubMed
  37. Atherosclerosis. 2003 Apr;167(2):265-73 - PubMed
  38. Science. 2014 Sep 26;345(6204):1250684 - PubMed
  39. PLoS One. 2012;7(9):e45087 - PubMed
  40. FASEB J. 2011 Oct;25(10 ):3436-47 - PubMed
  41. J Biol Chem. 2012 Mar 23;287(13):10379-93 - PubMed
  42. J Clin Invest. 2004 Mar;113(5):756-63 - PubMed
  43. J Exp Med. 2016 Jan 11;213(1):15-23 - PubMed
  44. PLoS One. 2014 Oct 29;9(10):e111394 - PubMed
  45. JAMA. 2014 Jul;312(2):189-90 - PubMed
  46. J Carcinog. 2013 Oct 09;12:19 - PubMed
  47. Redox Biol. 2014 Jan 10;2:206-10 - PubMed
  48. Nat Immunol. 2016 Mar;17(3):216-7 - PubMed
  49. J Immunol. 2015 Apr 15;194(8):3917-23 - PubMed
  50. Curr Opin Lipidol. 2005 Oct;16(5):543-8 - PubMed
  51. Nat Immunol. 2012 Mar 19;13(4):352-7 - PubMed
  52. Trends Pharmacol Sci. 2016 Jan;37(1):17-36 - PubMed
  53. Immunity. 2015 Mar 17;42(3):419-30 - PubMed
  54. Am J Physiol Endocrinol Metab. 2000 Nov;279(5):E1072-9 - PubMed
  55. J Clin Invest. 2003 Dec;112(12):1796-808 - PubMed
  56. Haematologica. 2010 Nov;95(11):1814-22 - PubMed
  57. Biochem Biophys Res Commun. 2016 Apr 29;473(2):545-50 - PubMed
  58. Mol Cell Biol. 2006 May;26(9):3455-67 - PubMed
  59. J Clin Invest. 2006 Jul;116(7):1793-801 - PubMed
  60. Eur J Immunol. 2014 Mar;44(3):728-41 - PubMed
  61. Obesity (Silver Spring). 2011 Jun;19(6):1109-17 - PubMed
  62. Curr Atheroscler Rep. 2007 Sep;9(3):222-9 - PubMed
  63. Mol Endocrinol. 2013 Jan;27(1):162-71 - PubMed
  64. Br J Nutr. 2013 Aug 28;110(3):509-14 - PubMed
  65. Nat Rev Endocrinol. 2016 Jan;12(1):15-28 - PubMed
  66. J Biol Chem. 2005 Apr 1;280(13):12888-95 - PubMed
  67. Blood. 2011 Feb 10;117(6):2033-43 - PubMed
  68. Mediators Inflamm. 2010;2010:513948 - PubMed
  69. JAMA. 2011 Jun 22;305(24):2525-31 - PubMed
  70. Cell Metab. 2006 Jul;4(1):13-24 - PubMed
  71. Alcohol Clin Exp Res. 2014 Jan;38(1):204-13 - PubMed
  72. Cell Metab. 2005 Feb;1(2):107-19 - PubMed
  73. Diabetes. 2013 Oct;62(10):3618-26 - PubMed
  74. J Clin Invest. 2013 Oct;123(10):4309-17 - PubMed
  75. Eur J Immunol. 2007 Nov;37 Suppl 1:S9-17 - PubMed
  76. J Clin Invest. 2008 Jul;118(7):2640-50 - PubMed
  77. PLoS One. 2014 May 23;9(5):e98109 - PubMed
  78. Cell Metab. 2012 Jun 6;15(6):813-26 - PubMed
  79. J Proteome Res. 2011 Nov 4;10(11):5242-50 - PubMed
  80. Biochim Biophys Acta. 2009 Oct;1788(10):2015-21 - PubMed
  81. Science. 2014 Sep 26;345(6204):1251086 - PubMed
  82. Immunol Rev. 2012 Sep;249(1):218-38 - PubMed
  83. Nat Med. 2001 Jun;7(6):699-705 - PubMed
  84. Can J Physiol Pharmacol. 2004 Jul;82(7):506-14 - PubMed
  85. Circ Res. 2010 Sep 17;107(6):737-46 - PubMed
  86. J Autoimmun. 2012 Sep;39(3):168-72 - PubMed
  87. Nat Protoc. 2012 Feb 16;7(3):500-7 - PubMed
  88. Nature. 2013 Apr 11;496(7444):238-42 - PubMed
  89. Biochem Pharmacol. 2007 Jul 15;74(2):202-14 - PubMed
  90. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8625-9 - PubMed
  91. FASEB J. 2015 May;29(5):1663-75 - PubMed
  92. J Biol Chem. 1997 Aug 15;272(33):20373-7 - PubMed
  93. Dev Cell. 2002 Apr;2(4):477-88 - PubMed
  94. J Biol Chem. 2003 Oct 31;278(44):43008-13 - PubMed

Publication Types

Grant support