Display options
Share it on

PLoS One. 2016 Sep 22;11(9):e0162974. doi: 10.1371/journal.pone.0162974. eCollection 2016.

Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome.

PloS one

Nick M Powell, Marc Modat, M Jorge Cardoso, Da Ma, Holly E Holmes, Yichao Yu, James O'Callaghan, Jon O Cleary, Ben Sinclair, Frances K Wiseman, Victor L J Tybulewicz, Elizabeth M C Fisher, Mark F Lythgoe, Sébastien Ourselin

Affiliations

  1. Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom.
  2. Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom.
  3. Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia.
  4. Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom.
  5. The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom.
  6. Imperial College, London W12 0NN, United Kingdom.

PMID: 27658297 PMCID: PMC5033246 DOI: 10.1371/journal.pone.0162974

Abstract

We describe a fully automated pipeline for the morphometric phenotyping of mouse brains from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to identify new morphological phenotypes in the brain of this first transchromosomic animal carrying human chromosome 21. We incorporate an accessible approach for simultaneously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and novel image processing steps for their separation and orientation. We employ clinically established multi-atlas techniques-superior to single-atlas methods-together with publicly-available atlas databases for automatic skull-stripping and tissue segmentation, providing high-quality, subject-specific tissue maps. We follow these steps with group-wise registration, structural parcellation and both Voxel- and Tensor-Based Morphometry-advantageous for their ability to highlight morphological differences without the laborious delineation of regions of interest. We show the application of freely available open-source software developed for clinical MRI analysis to mouse brain data: NiftySeg for segmentation and NiftyReg for registration, and discuss atlases and parameters suitable for the preclinical paradigm. We used this pipeline to compare 29 Tc1 brains with 26 wild-type littermate controls, imaged ex vivo at 9.4T. We show an unexpected increase in Tc1 total intracranial volume and, controlling for this, local volume and grey matter density reductions in the Tc1 brain compared to the wild-types, most prominently in the cerebellum, in agreement with human DS and previous histological findings.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Neuroscience. 2005;135(4):1203-15 - PubMed
  2. PLoS One. 2013 Apr 15;8(4):e60482 - PubMed
  3. IEEE Trans Med Imaging. 2015 Sep;34(9):1976-88 - PubMed
  4. Hum Brain Mapp. 2013 Oct;34(10):2635-54 - PubMed
  5. Neurobiol Aging. 2012 Apr;33(4):828.e31-44 - PubMed
  6. J Neurosci. 2000 Jun 1;20(11):4050-8 - PubMed
  7. Neuroimage. 2011 Jan 15;54(2):769-78 - PubMed
  8. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 - PubMed
  9. J Med Imaging (Bellingham). 2014 Jul;1(2):024003 - PubMed
  10. Development. 2014 Jun;141(12):2533-41 - PubMed
  11. Neuroimage. 2010 Nov 1;53(2):365-72 - PubMed
  12. Anat Rec (Hoboken). 2008 Mar;291(3):254-62 - PubMed
  13. Hum Mol Genet. 2010 Jul 15;19(14):2780-91 - PubMed
  14. PLoS One. 2009 Jul 24;4(7):e6354 - PubMed
  15. BMC Bioinformatics. 2011 Jun 16;12:237 - PubMed
  16. Nat Neurosci. 2015 Sep;18(9):1291-8 - PubMed
  17. J Nucl Med. 1990 Oct;31(10 ):1717-22 - PubMed
  18. Neuroimage. 2012 Sep;62(3):1408-14 - PubMed
  19. Neurosci Lett. 1998 Sep 11;253(3):175-8 - PubMed
  20. Mamm Genome. 2007 Jul;18(6-7):431-43 - PubMed
  21. Brain. 2004 Apr;127(Pt 4):811-24 - PubMed
  22. Neuroimage. 2009 Jul 1;46(3):726-38 - PubMed
  23. Neuroimage. 2007 Feb 15;34(4):1363-74 - PubMed
  24. Neurobiol Dis. 2012 Apr;46(1):190-203 - PubMed
  25. Dev Dyn. 2004 Jul;230(3):581-9 - PubMed
  26. Neuroimage. 2001 Jul;14(1 Pt 1):21-36 - PubMed
  27. IEEE Trans Med Imaging. 2000 Feb;19(2):143-50 - PubMed
  28. Brain Res. 2004 Oct 1;1022(1-2):101-9 - PubMed
  29. PLoS One. 2014 May 07;9(5):e96568 - PubMed
  30. Neurobiol Aging. 2016 Mar;39:184-94 - PubMed
  31. Magn Reson Imaging. 2012 Jul;30(6):789-98 - PubMed
  32. IEEE Trans Biomed Eng. 1995 Nov;42(11):1069-78 - PubMed
  33. Hum Brain Mapp. 2008 Oct;29(10):1147-58 - PubMed
  34. Magn Reson Med. 2005 Nov;54(5):1311-6 - PubMed
  35. Neuroimage. 2012 Aug 15;62(2):911-22 - PubMed
  36. Neuroimage. 2011 Apr 1;55(3):1091-108 - PubMed
  37. Cortex. 2010 Jul-Aug;46(7):831-44 - PubMed
  38. Med Image Anal. 2013 Aug;17(6):671-84 - PubMed
  39. J Neurosci Methods. 2002 Oct 30;120(2):203-9 - PubMed
  40. Neuroimage. 2011 Jun 1;56(3):974-83 - PubMed
  41. Hum Mol Genet. 2000 Jan 22;9(2):195-202 - PubMed
  42. Neuroinformatics. 2013 Jan;11(1):35-45 - PubMed
  43. Neuroimage. 2008 Aug 1;42(1):19-27 - PubMed
  44. Neuroimage. 2010 Feb 1;49(3):2340-51 - PubMed
  45. Stat Methods Med Res. 2003 Oct;12(5):419-46 - PubMed
  46. Curr Opin Chem Biol. 2005 Aug;9(4):413-20 - PubMed
  47. Neuroimage. 2013 Jan 15;65:97-108 - PubMed
  48. Front Neuroanat. 2008 Apr 17;2:1 - PubMed
  49. Neuroimage. 2006 Aug 1;32(1):159-69 - PubMed
  50. Learn Mem. 2008 Jul 14;15(7):492-500 - PubMed
  51. Am J Psychiatry. 2001 Oct;158(10):1659-65 - PubMed
  52. Am J Psychiatry. 1999 Apr;156(4):564-8 - PubMed
  53. PLoS One. 2014 Jan 27;9(1):e86576 - PubMed
  54. Neuroimage. 2002 Apr;15(4):870-8 - PubMed
  55. Neuroimage. 2008 Aug 1;42(1):60-9 - PubMed
  56. Neuroimage. 2011 Jun 1;56(3):1386-97 - PubMed
  57. BMJ. 2009 Oct 26;339:b3794 - PubMed
  58. Hum Mol Genet. 2009 Apr 15;18(R1):R75-83 - PubMed
  59. Neuroimage. 2003 Sep;20(1):393-403 - PubMed
  60. Hum Mol Genet. 2009 Apr 15;18(8):1449-63 - PubMed
  61. Exp Neurol. 2014 Jan;251:1-11 - PubMed
  62. Neuroimage. 2015 Jan 1;104:366-72 - PubMed
  63. Trends Mol Med. 2006 Jun;12(6):237-40 - PubMed
  64. Funct Neurol. 2013 Jan-Mar;28(1):19-28 - PubMed
  65. Proc SPIE Int Soc Opt Eng. 2009 Feb 1;7259:725943-725949 - PubMed
  66. Neuroimage. 2013 Nov 15;82:226-36 - PubMed
  67. Neurology. 1995 Feb;45(2):356-66 - PubMed
  68. Magn Reson Imaging. 2013 Nov;31(9):1522-31 - PubMed
  69. Neuroimage. 2012 Jul 16;61(4):1206-12 - PubMed
  70. Cereb Cortex. 2005 May;15(5):639-45 - PubMed
  71. PLoS One. 2012;7(12):e53361 - PubMed
  72. Science. 2005 Sep 23;309(5743):2033-7 - PubMed

Publication Types

Grant support