Display options
Share it on

J Am Stat Assoc. 2017;112(519):966-978. doi: 10.1080/01621459.2016.1252266. Epub 2016 Dec 16.

Set-Based Tests for the Gene-Environment Interaction in Longitudinal Studies.

Journal of the American Statistical Association

Zihuai He, Min Zhang, Seunggeun Lee, Jennifer A Smith, Sharon L R Kardia, Ana V Diez Roux, Bhramar Mukherjee

Affiliations

  1. Department of Biostatistics, University of Michigan.
  2. Department of Epidemiology, University of Michigan.
  3. Department of Epidemiology, Drexel University.

PMID: 29780190 PMCID: PMC5954413 DOI: 10.1080/01621459.2016.1252266

Abstract

We propose a generalized score type test for set-based inference for gene-environment interaction with longitudinally measured quantitative traits. The test is robust to misspecification of within subject correlation structure and has enhanced power compared to existing alternatives. Unlike tests for marginal genetic association, set-based tests for gene-environment interaction face the challenges of a potentially misspecified and high-dimensional main effect model under the null hypothesis. We show that our proposed test is robust to main effect misspecification of environmental exposure and genetic factors under the gene-environment independence condition. When genetic and environmental factors are dependent, the method of sieves is further proposed to eliminate potential bias due to a misspecified main effect of a continuous environmental exposure. A weighted principal component analysis approach is developed to perform dimension reduction when the number of genetic variants in the set is large relative to the sample size. The methods are motivated by an example from the Multi-Ethnic Study of Atherosclerosis (MESA), investigating interaction between measures of neighborhood environment and genetic regions on longitudinal measures of blood pressure over a study period of about seven years with 4 exams.

Keywords: Gene-environment independence; Generalized score test; MESA neighborhood study; Model misspecification; Robustness

References

  1. Epidemiology. 2011 Mar;22(2):257-61 - PubMed
  2. Am J Epidemiol. 2012 Feb 1;175(3):191-202 - PubMed
  3. JAMA Intern Med. 2015 Aug;175(8):1311-20 - PubMed
  4. Epidemiol Rev. 2007;29:129-43 - PubMed
  5. Genet Epidemiol. 2015 Sep;39(6):456-68 - PubMed
  6. Am J Epidemiol. 2012 Feb 1;175(3):177-90 - PubMed
  7. Am J Hum Genet. 2010 Jun 11;86(6):929-42 - PubMed
  8. Nucleic Acids Res. 2003 Jan 1;31(1):51-4 - PubMed
  9. Circulation. 2012 Feb 7;125(5):729-37 - PubMed
  10. Biometrics. 2015 Sep;71(3):606-15 - PubMed
  11. Brief Bioinform. 2007 Jan;8(1):32-44 - PubMed
  12. Epidemiology. 2008 Jul;19(4):590-8 - PubMed
  13. Nat Genet. 2007 Jul;39(7):906-13 - PubMed
  14. Ann Stat. 2013 Feb;41(1):196-220 - PubMed
  15. Genet Epidemiol. 2009 Sep;33(6):497-507 - PubMed
  16. Am J Epidemiol. 2002 Nov 1;156(9):871-81 - PubMed
  17. Hypertension. 2003 Feb;41(2):207-10 - PubMed
  18. Am J Hum Genet. 2011 Aug 12;89(2):277-88 - PubMed
  19. Biometrics. 2014 Sep;70(3):471-9 - PubMed
  20. Hum Hered. 2014;78(2):81-90 - PubMed
  21. J Am Stat Assoc. 2008 Dec 1;103(484):1693-1704 - PubMed
  22. Am J Epidemiol. 2016 Feb 1;183(3):237-47 - PubMed
  23. Biometrics. 2016 Mar;72 (1):156-64 - PubMed
  24. Nat Rev Genet. 2010 Apr;11(4):259-72 - PubMed
  25. Nat Genet. 2010 Feb;42(2):153-9 - PubMed
  26. PLoS One. 2011 May 12;6(5):e19416 - PubMed
  27. Bioinformatics. 2010 Sep 15;26(18):2336-7 - PubMed
  28. Am J Hum Genet. 2011 Jul 15;89(1):82-93 - PubMed
  29. Nat Genet. 2010 Dec;42(12):1068-76 - PubMed
  30. Am J Epidemiol. 2008 Apr 15;167(8):917-24 - PubMed
  31. Genet Epidemiol. 2011 Nov;35(7):606-19 - PubMed
  32. Nature. 2011 Sep 11;478(7367):103-9 - PubMed
  33. Am J Epidemiol. 2016 Jun 1;183(11):988-97 - PubMed
  34. Biometrics. 2011 Sep;67(3):967-74 - PubMed
  35. Biostatistics. 2013 Sep;14(4):667-81 - PubMed
  36. Am J Epidemiol. 2013 Jul 1;178(1):144-52 - PubMed

Publication Types

Grant support