Display options
Share it on

Light Sci Appl. 2019 Mar 13;8:31. doi: 10.1038/s41377-019-0142-1. eCollection 2019.

Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions.

Light, science & applications

Rekha Gautam, Yinxiao Xiang, Josh Lamstein, Yi Liang, Anna Bezryadina, Guo Liang, Tobias Hansson, Benjamin Wetzel, Daryl Preece, Adam White, Matthew Silverman, Susan Kazarian, Jingjun Xu, Roberto Morandotti, Zhigang Chen

Affiliations

  1. 1Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 USA.
  2. 2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240 USA.
  3. 3MOE Key Lab of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457 China.
  4. 4Guangxi Key Lab for Relativistic Astrophysics, Guangxi Colleges and Universities Key Lab of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 China.
  5. 5Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 USA.
  6. 6Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X 1S2 Canada.
  7. 7Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-581 83 Sweden.
  8. 8School of Mathematical and Physical Sciences, University of Sussex, Sussex House, Falmer, Brighton, BN1 9RH UK.
  9. 9Department of Biomedical Engineering, University of California Irvine, Irvine, CA USA.
  10. 10Clinical Laboratory Science Program, San Francisco State University, San Francisco, CA 94132 USA.
  11. 11Institute of Fundamental and Frontier Sciences, University of Electronic Science and Tech. of China, Chengdu, 610054 China.
  12. 12ITMO University, Saint Petersburg, 197101 Russia.

PMID: 30886708 PMCID: PMC6414597 DOI: 10.1038/s41377-019-0142-1

Abstract

Osmotic conditions play an important role in the cell properties of human red blood cells (RBCs), which are crucial for the pathological analysis of some blood diseases such as malaria. Over the past decades, numerous efforts have mainly focused on the study of the RBC biomechanical properties that arise from the unique deformability of erythrocytes. Here, we demonstrate nonlinear optical effects from human RBCs suspended in different osmotic solutions. Specifically, we observe self-trapping and scattering-resistant nonlinear propagation of a laser beam through RBC suspensions under all three osmotic conditions, where the strength of the optical nonlinearity increases with osmotic pressure on the cells. This tunable nonlinearity is attributed to optical forces, particularly the forward-scattering and gradient forces. Interestingly, in aged blood samples (with lysed cells), a notably different nonlinear behavior is observed due to the presence of free hemoglobin. We use a theoretical model with an optical force-mediated nonlocal nonlinearity to explain the experimental observations. Our work on light self-guiding through scattering bio-soft-matter may introduce new photonic tools for noninvasive biomedical imaging and medical diagnosis.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. Biomed Microdevices. 2015 Apr;17(2):26 - PubMed
  2. Biotechnol Lett. 2004 Jun;26(12):971-4 - PubMed
  3. Annu Rev Biophys Biomol Struct. 1994;23:247-85 - PubMed
  4. Phys Rev Lett. 2017 Aug 4;119(5):058101 - PubMed
  5. Nano Lett. 2014 May 14;14(5):2498-504 - PubMed
  6. Biomed Opt Express. 2012 Jul 1;3(7):1594-608 - PubMed
  7. MRS Bull. 2010 May;35(5):382-388 - PubMed
  8. Tissue Eng Part B Rev. 2008 Dec;14(4):321-40 - PubMed
  9. Phys Med Biol. 2013 Jun 7;58(11):R37-61 - PubMed
  10. Science. 1949 Nov 25;110(2865):543-8 - PubMed
  11. J Biomed Opt. 2010 Sep-Oct;15(5):055005 - PubMed
  12. Sci Rep. 2014 Oct 17;4:6659 - PubMed
  13. Nat Commun. 2015 Mar 11;6:6502 - PubMed
  14. Cytometry A. 2014 Apr;85(4):332-8 - PubMed
  15. Light Sci Appl. 2016 Sep 23;5(9):e16148 - PubMed
  16. Langmuir. 2009 Nov 3;25(21):12495-500 - PubMed
  17. Biomed Opt Express. 2011 Jul 1;2(7):1803-14 - PubMed
  18. Phys Rev Lett. 2010 Oct 15;105(16):163906 - PubMed
  19. Sci Rep. 2015 May 07;5:9768 - PubMed
  20. Anal Chem. 1997 Jul 15;69(14):2701-10 - PubMed
  21. Rep Prog Phys. 2012 Aug;75(8):086401 - PubMed
  22. Biomed Opt Express. 2016 Apr 18;7(5):1889-904 - PubMed
  23. Sci Rep. 2017 Aug 11;7(1):7928 - PubMed
  24. Nat Photonics. 2008;2(2):110-115 - PubMed
  25. Nat Commun. 2013;4:1768 - PubMed
  26. Int J Mol Sci. 2016 Sep 12;17(9): - PubMed
  27. Nat Photonics. 2015;9:563-571 - PubMed
  28. Appl Opt. 1988 Oct 1;27(19):4027-33 - PubMed
  29. J Am Chem Soc. 2016 Nov 9;138(44):14586-14591 - PubMed
  30. Biomed Opt Express. 2014 Dec 11;6(1):112-7 - PubMed
  31. Electrophoresis. 2008 Dec;29(24):4813-51 - PubMed
  32. Rev Sci Instrum. 2009 Apr;80(4):043706 - PubMed
  33. J Biomed Opt. 2017 Sep 1;22(9):91516 - PubMed
  34. Light Sci Appl. 2016;5: - PubMed
  35. Appl Opt. 2000 Nov 1;39(31):5884-9 - PubMed
  36. Phys Rev Lett. 2013 Nov 22;111(21):218302 - PubMed
  37. Annu Rev Biophys Bioeng. 1982;11:129-50 - PubMed
  38. Lab Med. 2018 Oct 11;49(4):298-310 - PubMed
  39. Biomicrofluidics. 2014 Sep 17;8(5):051501 - PubMed
  40. Biophys J. 2012 Jul 3;103(1):1-10 - PubMed

Publication Types