Display options
Share it on

Nat Genet. 2019 Apr;51(4):584-591. doi: 10.1038/s41588-019-0379-x. Epub 2019 Mar 29.

Clinical use of current polygenic risk scores may exacerbate health disparities.

Nature genetics

Alicia R Martin, Masahiro Kanai, Yoichiro Kamatani, Yukinori Okada, Benjamin M Neale, Mark J Daly

Affiliations

  1. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. [email protected].
  2. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA. [email protected].
  3. Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA. [email protected].
  4. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
  5. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  6. Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  7. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
  8. Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
  9. Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  10. Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
  11. Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
  12. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

PMID: 30926966 PMCID: PMC6563838 DOI: 10.1038/s41588-019-0379-x

Abstract

Polygenic risk scores (PRS) are poised to improve biomedical outcomes via precision medicine. However, the major ethical and scientific challenge surrounding clinical implementation of PRS is that those available today are several times more accurate in individuals of European ancestry than other ancestries. This disparity is an inescapable consequence of Eurocentric biases in genome-wide association studies, thus highlighting that-unlike clinical biomarkers and prescription drugs, which may individually work better in some populations but do not ubiquitously perform far better in European populations-clinical uses of PRS today would systematically afford greater improvement for European-descent populations. Early diversifying efforts show promise in leveling this vast imbalance, even when non-European sample sizes are considerably smaller than the largest studies to date. To realize the full and equitable potential of PRS, greater diversity must be prioritized in genetic studies, and summary statistics must be publically disseminated to ensure that health disparities are not increased for those individuals already most underserved.

References

  1. Knowles, J. W. & Ashley, E. A. Cardiovascular disease: the rise of the genetic risk score. PLoS Med. 15, e1002546–e1002547 (2018). - PubMed
  2. Maas, P. et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol. 2, 1295–1302 (2016). - PubMed
  3. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018). - PubMed
  4. Sharp, S. A. et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care 42, 200–207 (2019). - PubMed
  5. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). - PubMed
  6. Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation 133, 1181–1188 (2016). - PubMed
  7. Natarajan, P. et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135, 2091–2101 (2017). - PubMed
  8. Paquette, M. et al. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 11, 725–732.e5 (2017). - PubMed
  9. Tikkanen, E., Havulinna, A. S., Palotie, A., Salomaa, V. & Ripatti, S. Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 33, 2261–2266 (2013). - PubMed
  10. Frieser, M. J., Wilson, S. & Vrieze, S. Behavioral impact of return of genetic test results for complex disease: systematic review and meta-analysis. Health Psychol. 37, 1134–1144 (2018). - PubMed
  11. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016). - PubMed
  12. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017). - PubMed
  13. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017). - PubMed
  14. Scutari, M., Mackay, I. & Balding, D. Using genetic distance to infer the accuracy of genomic prediction. PLoS Genet. 12, e1006288 (2016). - PubMed
  15. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015). - PubMed
  16. Ware, E. B. et al. Heterogeneity in polygenic scores for common human traits. Preprint at https://www.biorxiv.org/content/10.1101/106062v1 (2017). - PubMed
  17. Curtis, D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr. Genet. 28, 85–89 (2018). - PubMed
  18. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014). - PubMed
  19. Belsky, D. W. et al. Development and evaluation of a genetic risk score for obesity. Biodemography Soc. Biol. 59, 85–100 (2013). - PubMed
  20. Domingue, B. W., Belsky, D., Conley, D., Harris, K. M. & Boardman, J. D. Polygenic influence on educational attainment: new evidence from The National Longitudinal Study of Adolescent to Adult Health. AERA Open 1, 1–13 (2015). - PubMed
  21. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018). - PubMed
  22. Vassos, E. et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol. Psychiatry 81, 470–477 (2017). - PubMed
  23. Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467 (2017). - PubMed
  24. Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017). - PubMed
  25. Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 25, 489–494 (2009). - PubMed
  26. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016). - PubMed
  27. Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19, 21 (2018). - PubMed
  28. Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nat. Rev. Genet. 11, 356–366 (2010). - PubMed
  29. Sham, P. C., Cherny, S. S., Purcell, S. & Hewitt, J. K. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am. J. Hum. Genet. 66, 1616–1630 (2000). - PubMed
  30. 1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). - PubMed
  31. Williams, A. L. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014). - PubMed
  32. Estrada, K. et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014). - PubMed
  33. Haiman, C. A. et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet. 43, 570–573 (2011). - PubMed
  34. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010). - PubMed
  35. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015). - PubMed
  36. Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 11, e1001661 (2013). - PubMed
  37. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007). - PubMed
  38. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014). - PubMed
  39. Waters, K. M. et al. Consistent association of type 2 diabetes risk variants found in europeans in diverse racial and ethnic groups. PLoS Genet. 6, e1001078–e1001079 (2010). - PubMed
  40. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Preprint at https://www.biorxiv.org/content/10.1101/445874v2 (2018). - PubMed
  41. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016). - PubMed
  42. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017). - PubMed
  43. Sohail, M. et al. Signals of polygenic adaptation on height have been overestimated due to uncorrected population structure in genome-wide association studies. Preprint at https://www.biorxiv.org/content/10.1101/355057v3 (2018). - PubMed
  44. Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. Preprint at https://www.biorxiv.org/content/10.1101/354951v4 (2018). - PubMed
  45. Kerminen, S. et al. Geographic variation and bias in polygenic scores of complex diseases and traits in Finland. Preprint at https://www.biorxiv.org/content/10.1101/485441v1 (2018). - PubMed
  46. Novembre, J. & Barton, N. H. Tread lightly interpreting polygenic tests of selection. Genetics 208, 1351–1355 (2018). - PubMed
  47. Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16, 333–343 (2015). - PubMed
  48. Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016). - PubMed
  49. Galinsky, K. J. et al. Estimating cross-population genetic correlations of causal effect sizes. Genet. Epidemiol. 43, 180–188 (2019). - PubMed
  50. Li, D., Zhao, H. & Gelernter, J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 725–737 (2012). - PubMed
  51. Zhu, Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. Genet. 96, 377–385 (2015). - PubMed
  52. Paré, G., Mao, S. & Deng, W. Q. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep. 7, 12665 (2017). - PubMed
  53. Martin, A. R. et al. An unexpectedly complex architecture for skin pigmentation in Africans. Cell 171, 1340–1353.e14 (2017). - PubMed
  54. Duncan, L. E. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666–673 (2018). - PubMed
  55. H3Africa Consortium. et al. Enabling the genomic revolution in Africa. Science 344, 1346–1348 (2014). - PubMed
  56. Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018). - PubMed
  57. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018). - PubMed
  58. Howrigan, D. Details and Considerations of the UK Biobank GWAS. http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas (accessed 9 November 2017) - PubMed
  59. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017). - PubMed
  60. Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell 175, 347–359.e14 (2018). - PubMed
  61. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013). - PubMed
  62. Wray, N. R. et al. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry 55, 1068–1087 (2014). - PubMed
  63. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018). - PubMed
  64. Manrai, A. K., Patel, C. J. & Ioannidis, J. P. A. In the era of precision medicine and big data, who is normal? JAMA 319, 1981–1982 (2018). - PubMed
  65. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013). - PubMed
  66. Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA 308, 1545–1554 (2012). - PubMed
  67. Rappoport, N. et al. Comparing ethnicity-specific reference intervals for clinical laboratory tests from EHR data. J. Appl. Lab. Med. 3, 366–377 (2018). - PubMed
  68. Lim, E., Miyamura, J. & Chen, J. J. Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawaii J. Med. Public Health 74, 302–310 (2015). - PubMed
  69. Hero, J. O., Zaslavsky, A. M. & Blendon, R. J. The United States leads other nations in differences by income in perceptions of health and health care. Health Aff. (Millwood) 36, 1032–1040 (2017). - PubMed
  70. Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 35, 407–411 (2016). - PubMed
  71. Gilly, A. et al. Very low depth whole genome sequencing in complex trait association studies. Bioinformatics https://doi.org/10.1093/bioinformatics/bty1032 (2018). - PubMed
  72. Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44, 631–635 (2012). - PubMed
  73. Martin, A. R., Teferra, S., Möller, M., Hoal, E. G. & Daly, M. J. The critical needs and challenges for genetic architecture studies in Africa. Curr. Opin. Genet. Dev. 53, 113–120 (2018). - PubMed
  74. Coles, E. & Mensah, G. A. Geography of genetics and genomics research funding in Africa. Glob. Heart 12, 173–176 (2017). - PubMed
  75. Mulder, N. J. et al. Development of bioinformatics infrastructure for genomics research. Glob. Heart 12, 91–98 (2017). - PubMed
  76. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017). - PubMed

MeSH terms

Publication Types

Grant support