Display options
Share it on

Cell Mol Immunol. 2021 Aug;18(8):2024-2039. doi: 10.1038/s41423-020-00589-1. Epub 2020 Nov 24.

Pik3c3 deficiency in myeloid cells imparts partial resistance to experimental autoimmune encephalomyelitis associated with reduced IL-1β production.

Cellular & molecular immunology

Guan Yang, Wenqiang Song, Jielin Xu, J Luke Postoak, Feixiong Cheng, Jennifer Martinez, Jianhua Zhang, Lan Wu, Luc Van Kaer

Affiliations

  1. Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
  2. Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
  3. Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
  4. Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
  5. Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
  6. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
  7. Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
  8. Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. [email protected].

PMID: 33235386 PMCID: PMC8322046 DOI: 10.1038/s41423-020-00589-1

Abstract

The PIK3C3/VPS34 subunit of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex plays a role in both canonical and noncanonical autophagy, key processes that control immune-cell responsiveness to a variety of stimuli. Our previous studies found that PIK3C3 is a critical regulator that controls the development, homeostasis, and function of dendritic and T cells. In this study, we investigated the role of PIK3C3 in myeloid cell biology using myeloid cell-specific Pik3c3-deficient mice. We found that Pik3c3-deficient macrophages express increased surface levels of major histocompatibility complex (MHC) class I and class II molecules. In addition, myeloid cell-specific Pik3c3 ablation in mice caused a partial impairment in the homeostatic maintenance of macrophages expressing the apoptotic cell uptake receptor TIM-4. Pik3c3 deficiency caused phenotypic changes in myeloid cells that were dependent on the early machinery (initiation/nucleation) of the classical autophagy pathway. Consequently, myeloid cell-specific Pik3c3-deficient animals showed significantly reduced severity of experimental autoimmune encephalomyelitis (EAE), a primarily CD4

© 2020. The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature.

Keywords: Autophagy; Experimental autoimmune encephalomyelitis; IL-1β; Myeloid cells; PIK3C3

References

  1. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu Rev. Cell Dev. Biol. 27, 107–132 (2011). - PubMed
  2. Ktistakis, N. T. & Tooze, S. A. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26, 624–635 (2016). - PubMed
  3. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008). - PubMed
  4. Jaber, N. & Zong, W. X. Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann. N. Y. Acad. Sci. 1280, 48–51 (2013). - PubMed
  5. Backer, J. M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J. 410, 1–17 (2008). - PubMed
  6. Boyle, K. B. & Randow, F. Rubicon swaps autophagy for LAP. Nat. Cell Biol. 17, 843–845 (2015). - PubMed
  7. Heckmann, B. L. et al. LC3-associated endocytosis facilitates beta-amyloid clearance and mitigates neurodegeneration in murine alzheimer’s disease. Cell 178, 536–551.e14 (2019). - PubMed
  8. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001). - PubMed
  9. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008). - PubMed
  10. Zhou, X. et al. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc. Natl Acad. Sci. U.S.A. 107, 9424–9429 (2010). - PubMed
  11. McLeod, I. X., Zhou, X., Li, Q. J., Wang, F. & He, Y. W. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J. Immunol. 187, 5051–5061 (2011). - PubMed
  12. Willinger, T. & Flavell, R. A. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl Acad. Sci. U.S.A. 109, 8670–8675 (2012). - PubMed
  13. Parekh, V. V. et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J. Immunol. 190, 5086–5101 (2013). - PubMed
  14. Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. U.S.A. 109, 2003–2008 (2012). - PubMed
  15. Devereaux, K. et al. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PloS ONE 8, e76405 (2013). - PubMed
  16. Bechtel, W. et al. The class III phosphatidylinositol 3-kinase PIK3C3/VPS34 regulates endocytosis and autophagosome-autolysosome formation in podocytes. Autophagy 9, 1097–1099 (2013). - PubMed
  17. Bechtel, W. et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J. Am. Soc. Nephrology 24, 727–743 (2013). - PubMed
  18. Morishita, H. et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J. Biol. Chem. 288, 11436–11447 (2013). - PubMed
  19. Parekh, V. V. et al. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8alpha(+) dendritic cells. Proc. Natl Acad. Sci. U.S.A. 114, E6371–E6380 (2017). - PubMed
  20. Yang, G. et al. Autophagy-related protein PIK3C3/VPS34 controls T cell metabolism and function. Autophagy 1–12, https://doi.org/10.1080/15548627.2020.1752979 (2020). - PubMed
  21. Alirezaei, M. et al. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 5, 152–158 (2009). - PubMed
  22. Patergnani, S. et al. Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. J. Neurol., Neurosurg., Psychiatry 89, 439–441 (2018). - PubMed
  23. Bhattacharya, A., Parillon, X., Zeng, S., Han, S. & Eissa, N. T. Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J. Biol. Chem. 289, 26525–26532 (2014). - PubMed
  24. Buckley, K. M. et al. Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp. Transl. Stroke Med. 6, 8 (2014). - PubMed
  25. Bonam, S. R., Wang, F. & Muller, S. Autophagy: a new concept in autoimmunity regulation and a novel therapeutic option. J. Autoimmun. 94, 16–32 (2018). - PubMed
  26. Zhu, B. et al. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228–5237 (2007). - PubMed
  27. Li, L., Wang, Z. V., Hill, J. A. & Lin, F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J. Am. Soc. Nephrol. 25, 305–315 (2014). - PubMed
  28. Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, https://doi.org/10.1126/science.aat7554 (2019). - PubMed
  29. Abram, C. L., Roberge, G. L., Hu, Y. & Lowell, C. A. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J. Immunol. Methods 408, 89–100 (2014). - PubMed
  30. Ferro, A. et al. Inhibition of NF-kappaB signaling in IKKbetaF/F;LysM Cre mice causes motor deficits but does not alter pathogenesis of Spinocerebellar ataxia type 1. PloS ONE 13, e0200013 (2018). - PubMed
  31. Pulido-Salgado, M. et al. Myeloid C/EBPbeta deficiency reshapes microglial gene expression and is protective in experimental autoimmune encephalomyelitis. J. Neuroinflammation 14, 54 (2017). - PubMed
  32. Abdel Fattah, E., Bhattacharya, A., Herron, A., Safdar, Z. & Eissa, N. T. Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency. J. Immunol. 194, 5407–5416 (2015). - PubMed
  33. Kanayama, M., He, Y. W. & Shinohara, M. L. The lung is protected from spontaneous inflammation by autophagy in myeloid cells. J. Immunol. 194, 5465–5471 (2015). - PubMed
  34. Kanayama, M., Danzaki, K., He, Y. W. & Shinohara, M. L. Lung inflammation stalls Th17-cell migration en route to the central nervous system during the development of experimental autoimmune encephalomyelitis. Int. Immunol. 28, 463–469 (2016). - PubMed
  35. Wang, Y. T. et al. Select autophagy genes maintain quiescence of tissue-resident macrophages and increase susceptibility to Listeria monocytogenes. Nat. Microbiol. 5, 272–281 (2020). - PubMed
  36. Pua, H. H., Guo, J., Komatsu, M. & He, Y. W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009). - PubMed
  37. Riffelmacher, T., Richter, F. C. & Simon, A. K. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 14, 199–206 (2018). - PubMed
  38. Vats, D. et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006). - PubMed
  39. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013). - PubMed
  40. Wong, K. et al. Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc. Natl Acad. Sci. U.S.A. 107, 8712–8717 (2010). - PubMed
  41. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019). - PubMed
  42. Yang, G., Driver, J. P. & Van Kaer, L. The role of autophagy in iNKT cell development. Front. Immunol. 9, 2653 (2018). - PubMed
  43. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015). - PubMed
  44. Bhattacharya, A. et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep. 12, 1731–1739 (2015). - PubMed
  45. Shi, J., Hua, L., Harmer, D., Li, P. & Ren, G. Cre driver mice targeting macrophages. Methods Mol. Biol. 1784, 263–275 (2018). - PubMed
  46. Orthgiess, J. et al. Neurons exhibit Lyz2 promoter activity in vivo: Implications for using LysM-Cre mice in myeloid cell research. Eur. J. Immunol. 46, 1529–1532 (2016). - PubMed
  47. Jiang, Z., Jiang, J. X. & Zhang, G. X. Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol. Lett. 160, 17–22 (2014). - PubMed
  48. Slavin, A. J. et al. Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. J. Clin. Invest. 108, 1133–1139 (2001). - PubMed
  49. Sosa, R. A., Murphey, C., Ji, N., Cardona, A. E. & Forsthuber, T. G. The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 191, 5848–5857 (2013). - PubMed
  50. Yogev, N. et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor(+) regulatory T cells. Immunity 37, 264–275 (2012). - PubMed
  51. Isaksson, M., Lundgren, B. A., Ahlgren, K. M., Kampe, O. & Lobell, A. Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE. Eur. J. Immunol. 42, 2555–2563 (2012). - PubMed
  52. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. U.S.A. 108, 17396–17401 (2011). - PubMed
  53. Hovelmeyer, N. et al. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J. Immunol. 175, 5875–5884 (2005). - PubMed
  54. Wu, M. Y. et al. PI3KC3 complex subunit NRBF2 is required for apoptotic cell clearance to restrict intestinal inflammation. Autophagy 1–16, https://doi.org/10.1080/15548627.2020.1741332 (2020). - PubMed
  55. Konishi, A., Arakawa, S., Yue, Z. & Shimizu, S. Involvement of Beclin 1 in engulfment of apoptotic cells. J. Biol. Chem. 287, 13919–13929 (2012). - PubMed
  56. Levesque, S. A. et al. Myeloid cell transmigration across the CNS vasculature triggers IL-1beta-driven neuroinflammation during autoimmune encephalomyelitis in mice. J. Exp. Med. 213, 929–949 (2016). - PubMed
  57. Pare, A. et al. IL-1beta enables CNS access to CCR2(hi) monocytes and the generation of pathogenic cells through GM-CSF released by CNS endothelial cells. Proc. Natl Acad. Sci. U.S.A. 115, E1194–E1203 (2018). - PubMed
  58. Olcum, M., Tastan, B., Kiser, C., Genc, S. & Genc, K. Microglial NLRP3 inflammasome activation in multiple sclerosis. Adv. Protein Chem. Struct. Biol. 119, 247–308 (2020). - PubMed
  59. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011). - PubMed
  60. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). - PubMed
  61. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007). - PubMed
  62. Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019). - PubMed
  63. Van Kaer, L., Postoak, J. L., Wang, C., Yang, G. & Wu, L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-019-0221-5 (2019). - PubMed
  64. Yin, L. et al. Autophagy-related gene16L2, a potential serum biomarker of multiple sclerosis evaluated by bead-based proteomic technology. Neurosci. Lett. 562, 34–38 (2014). - PubMed
  65. Igci, M. et al. Gene expression profiles of autophagy-related genes in multiple sclerosis. Gene 588, 38–46 (2016). - PubMed
  66. Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015). - PubMed
  67. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264–268 (2008). - PubMed
  68. Kimura, T. et al. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J. 36, 42–60 (2017). - PubMed
  69. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 30, 4701–4711 (2011). - PubMed
  70. Cain, D. W. et al. Identification of a tissue-specific, C/EBPbeta-dependent pathway of differentiation for murine peritoneal macrophages. J. Immunol. 191, 4665–4675 (2013). - PubMed
  71. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). - PubMed

Publication Types

Grant support