Display options
Share it on

Genome Biol. 2021 Jan 04;22(1):1. doi: 10.1186/s13059-020-02207-9.

Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual.

Genome biology

Diana L Cousminer, Yadav Wagley, James A Pippin, Ahmed Elhakeem, Gregory P Way, Matthew C Pahl, Shana E McCormack, Alessandra Chesi, Jonathan A Mitchell, Joseph M Kindler, Denis Baird, April Hartley, Laura Howe, Heidi J Kalkwarf, Joan M Lappe, Sumei Lu, Michelle E Leonard, Matthew E Johnson, Hakon Hakonarson, Vicente Gilsanz, John A Shepherd, Sharon E Oberfield, Casey S Greene, Andrea Kelly, Deborah A Lawlor, Benjamin F Voight, Andrew D Wells, Babette S Zemel, Kurt D Hankenson, Struan F A Grant

Affiliations

  1. Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. [email protected].
  2. Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. [email protected].
  3. Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. [email protected].
  4. Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
  5. Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  6. MRC Integrative Epidemiology Unit, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.
  7. Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
  8. Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02140, USA.
  9. Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  10. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  11. Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
  12. Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  13. Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA.
  14. Department of Medicine and College of Nursing, Creighton University School of Medicine, Omaha, NB, USA.
  15. Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  16. Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
  17. Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA.
  18. Department of Epidemiology and Population Science, University of Hawaii Cancer Center, Honolulu, HI, USA.
  19. Division of Pediatric Endocrinology, Columbia University Medical Center, New York, NY, USA.
  20. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
  21. Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA.
  22. Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
  23. Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  24. Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
  25. Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA. [email protected].
  26. Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. [email protected].
  27. Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. [email protected].
  28. Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. [email protected].
  29. Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA. [email protected].
  30. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. [email protected].

PMID: 33397451 PMCID: PMC7780623 DOI: 10.1186/s13059-020-02207-9

Abstract

BACKGROUND: Bone accrual impacts lifelong skeletal health, but genetic discovery has been primarily limited to cross-sectional study designs and hampered by uncertainty about target effector genes. Here, we capture this dynamic phenotype by modeling longitudinal bone accrual across 11,000 bone scans in a cohort of healthy children and adolescents, followed by genome-wide association studies (GWAS) and variant-to-gene mapping with functional follow-up.

RESULTS: We identify 40 loci, 35 not previously reported, with various degrees of supportive evidence, half residing in topological associated domains harboring known bone genes. Of several loci potentially associated with later-life fracture risk, a candidate SNP lookup provides the most compelling evidence for rs11195210 (SMC3). Variant-to-gene mapping combining ATAC-seq to assay open chromatin with high-resolution promoter-focused Capture C identifies contacts between GWAS loci and nearby gene promoters. siRNA knockdown of gene expression supports the putative effector gene at three specific loci in two osteoblast cell models. Finally, using CRISPR-Cas9 genome editing, we confirm that the immediate genomic region harboring the putative causal SNP influences PRPF38A expression, a location which is predicted to coincide with a set of binding sites for relevant transcription factors.

CONCLUSIONS: Using a new longitudinal approach, we expand the number of genetic loci putatively associated with pediatric bone gain. Functional follow-up in appropriate cell models finds novel candidate genes impacting bone accrual. Our data also raise the possibility that the cell fate decision between osteogenic and adipogenic lineages is important in normal bone accrual.

Keywords: Bone development; CRISPR; Chromatin; Gene mapping; Genome-wide association study; Longitudinal analysis; Osteoblasts; Osteogenesis; Skeletal development

References

  1. Cell. 2004 Nov 12;119(4):555-66 - PubMed
  2. Dev Cell. 2004 Mar;6(3):423-35 - PubMed
  3. Clin J Am Soc Nephrol. 2008 Nov;3 Suppl 3:S131-9 - PubMed
  4. Nature. 2015 Oct 1;526(7571):112-7 - PubMed
  5. N Engl J Med. 2008 Sep 11;359(11):1128-35 - PubMed
  6. Cell Death Differ. 2009 Oct;16(10):1332-43 - PubMed
  7. Nat Rev Rheumatol. 2009 Dec;5(12):667-76 - PubMed
  8. Aging Cell. 2004 Dec;3(6):379-89 - PubMed
  9. Horm Res Paediatr. 2017;88(1):22-37 - PubMed
  10. Nat Genet. 2012 Apr 15;44(5):491-501 - PubMed
  11. Nat Genet. 2015 Mar;47(3):284-90 - PubMed
  12. Cell Death Differ. 2016 Jul;23(7):1128-39 - PubMed
  13. J Am Coll Nutr. 2011 Oct;30(5 Suppl 1):438S-48S - PubMed
  14. Science. 2005 Aug 12;309(5737):1074-8 - PubMed
  15. J Immunol. 2018 Nov 1;201(9):2832-2841 - PubMed
  16. J Biol Chem. 2013 Aug 30;288(35):25400-13 - PubMed
  17. Am J Clin Nutr. 2007 Mar;85(3):803-7 - PubMed
  18. AJR Am J Roentgenol. 1984 Jun;142(6):1253-5 - PubMed
  19. J Bone Miner Res. 2001 Apr;16(4):597-604 - PubMed
  20. J Clin Invest. 2018 Apr 2;128(4):1429-1441 - PubMed
  21. J Clin Endocrinol Metab. 2010 Apr;95(4):1690-8 - PubMed
  22. Am J Hum Genet. 2007 Mar;80(3):485-94 - PubMed
  23. Stem Cell Res Ther. 2016 Aug 26;7(1):123 - PubMed
  24. Nature. 2008 Jul 10;454(7201):221-5 - PubMed
  25. Am J Hum Genet. 2015 Jul 2;97(1):99-110 - PubMed
  26. Diabetes. 2008 Apr;57(4):1143-6 - PubMed
  27. BMJ. 2018 Aug 29;362:k3225 - PubMed
  28. Physiol Rev. 2015 Oct;95(4):1359-81 - PubMed
  29. Nat Genet. 2015 Nov;47(11):1236-41 - PubMed
  30. Osteoporos Int. 2016 Apr;27(4):1281-1386 - PubMed
  31. N Engl J Med. 1998 Apr 9;338(15):1016-21 - PubMed
  32. Clin Orthop Relat Res. 1971 Oct;80:147-54 - PubMed
  33. J Biol Chem. 2018 Nov 2;293(44):17119-17134 - PubMed
  34. Nat Commun. 2019 Mar 19;10(1):1260 - PubMed
  35. J Clin Invest. 2016 Dec 1;126(12):4482-4496 - PubMed
  36. J Bone Miner Res. 2015 Jan;30(1):156-64 - PubMed
  37. Gigascience. 2018 Aug 1;7(8): - PubMed
  38. Osteoporos Int. 2014 Feb;25(2):783-6 - PubMed
  39. Eur J Hum Genet. 2017 Nov;25(11):1286-1289 - PubMed
  40. Int J Epidemiol. 2013 Feb;42(1):111-27 - PubMed
  41. Bone. 2016 Mar;84:262-270 - PubMed
  42. RNA. 2016 Feb;22(2):265-77 - PubMed
  43. Int J Epidemiol. 2016 Aug;45(4):1125-1134 - PubMed
  44. Nat Genet. 2012 Jun 17;44(7):821-4 - PubMed
  45. Bone. 2019 Apr;121:221-226 - PubMed
  46. Development. 1996 Jan;122(1):113-20 - PubMed
  47. Hum Mol Genet. 2009 May 15;18(10):1719-39 - PubMed
  48. PLoS One. 2011 Mar 25;6(3):e18168 - PubMed
  49. Mol Cell Endocrinol. 2018 Feb 5;461:22-31 - PubMed
  50. Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16618-23 - PubMed
  51. Sci Rep. 2017 Jan 13;7:40505 - PubMed
  52. Biochem Biophys Res Commun. 2017 Jun 17;488(1):15-21 - PubMed
  53. Nat Genet. 2008 Mar;40(3):284-6 - PubMed
  54. J Clin Invest. 1999 May;103(9):1345-52 - PubMed
  55. Am J Hum Genet. 2018 Jan 4;102(1):88-102 - PubMed
  56. Bone. 2006 Jul;39(1):213-21 - PubMed
  57. JAMA Pediatr. 2017 Sep 5;171(9):e171769 - PubMed
  58. Int J Epidemiol. 2013 Feb;42(1):97-110 - PubMed
  59. Nat Genet. 1996 Oct;14(2):203-5 - PubMed
  60. J Clin Endocrinol Metab. 2010 Mar;95(3):1265-73 - PubMed
  61. Int J Epidemiol. 2010 Dec;39(6):1558-66 - PubMed
  62. Am J Hum Genet. 2004 Apr;74(4):765-9 - PubMed
  63. J Bone Miner Res. 2018 Jul;33(7):1362-1375 - PubMed
  64. Nat Genet. 2018 Jul;50(7):956-967 - PubMed
  65. Front Physiol. 2018 May 08;9:504 - PubMed
  66. Am J Hum Genet. 2020 Feb 6;106(2):188-201 - PubMed
  67. Nat Commun. 2014 Jun 02;5:4011 - PubMed
  68. Nat Rev Genet. 2018 Dec;19(12):789-800 - PubMed
  69. Nat Commun. 2016 Jun 13;7:ncomms11840 - PubMed
  70. Nature. 2000 Nov 30;408(6812):600-5 - PubMed
  71. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 06;368(1612):20120431 - PubMed
  72. J Immunol. 2016 Jun 15;196(12):4977-86 - PubMed
  73. JAMA. 2001 Feb 14;285(6):785-95 - PubMed
  74. Cell. 2008 Mar 7;132(5):794-806 - PubMed
  75. Nat Genet. 2000 Sep;26(1):19-20 - PubMed
  76. Bone. 2011 Sep;49(3):319-27 - PubMed
  77. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6356-61 - PubMed
  78. J Bone Miner Res. 1999 Sep;14(9):1513-21 - PubMed
  79. Med Sci Monit. 2017 Aug 24;23:4095-4101 - PubMed
  80. N Engl J Med. 2013 Jun 27;368(26):2476-2486 - PubMed
  81. J Bone Miner Res. 2017 Jun;32(6):1274-1281 - PubMed
  82. PLoS Genet. 2014 Jun 19;10(6):e1004423 - PubMed
  83. J Bone Miner Res. 2015 Sep;30(9):1676-83 - PubMed
  84. Biogerontology. 2001;2(3):165-71 - PubMed
  85. PLoS One. 2011;6(11):e27324 - PubMed
  86. Mech Dev. 2001 Aug;106(1-2):77-83 - PubMed
  87. Genomics Proteomics Bioinformatics. 2018 Jun;16(3):172-186 - PubMed
  88. Nat Genet. 2017 Oct;49(10):1468-1475 - PubMed
  89. J Am Acad Nurse Pract. 2004 Jul;16(7):274-82 - PubMed
  90. Bone. 2018 Oct;115:8-14 - PubMed
  91. J Clin Endocrinol Metab. 2004 Jan;89(1):344-51 - PubMed
  92. Dev Biol. 2015 Feb 15;398(2):242-54 - PubMed
  93. Endocrinology. 2008 Apr;149(4):1728-35 - PubMed
  94. J Biol Chem. 2014 Dec 26;289(52):36048-58 - PubMed
  95. Nat Genet. 2010 Jul;42(7):565-9 - PubMed
  96. Nature. 2014 Mar 20;507(7492):376-380 - PubMed
  97. Epigenetics Chromatin. 2019 Jan 3;12(1):3 - PubMed
  98. J Cell Physiol. 2018 Jun;233(6):4606-4617 - PubMed
  99. J Clin Endocrinol Metab. 2011 Oct;96(10):3160-9 - PubMed
  100. Dev Dyn. 2007 Aug;236(8):2235-44 - PubMed

Publication Types

Grant support