Display options
Share it on

Phys Rev Lett. 2021 Aug 20;127(8):082501. doi: 10.1103/PhysRevLett.127.082501.

Triangle Singularity as the Origin of the a_{1}(1420).

Physical review letters

G D Alexeev, M G Alexeev, A Amoroso, V Andrieux, V Anosov, A Antoshkin, K Augsten, W Augustyniak, C D R Azevedo, B Badełek, F Balestra, M Ball, J Barth, R Beck, Y Bedfer, J Berenguer Antequera, J Bernhard, M Bodlak, F Bradamante, A Bressan, V E Burtsev, W-C Chang, C Chatterjee, M Chiosso, A G Chumakov, S-U Chung, A Cicuttin, P M M Correia, M L Crespo, D D'Ago, S Dalla Torre, S S Dasgupta, S Dasgupta, I Denisenko, O Yu Denisov, S V Donskov, N Doshita, Ch Dreisbach, W Dünnweber, R R Dusaev, A Efremov, P D Eversheim, P Faccioli, M Faessler, M Finger, M Finger, H Fischer, C Franco, J M Friedrich, V Frolov, F Gautheron, O P Gavrichtchouk, S Gerassimov, J Giarra, I Gnesi, M Gorzellik, A Grasso, A Gridin, M Grosse Perdekamp, B Grube, A Guskov, D von Harrach, R Heitz, F Herrmann, N Horikawa, N d'Hose, C-Y Hsieh, S Huber, S Ishimoto, A Ivanov, T Iwata, M Jandek, V Jary, R Joosten, P Jörg, E Kabuß, F Kaspar, A Kerbizi, B Ketzer, G V Khaustov, Yu A Khokhlov, Yu Kisselev, F Klein, J H Koivuniemi, V N Kolosov, K Kondo Horikawa, I Konorov, V F Konstantinov, A M Kotzinian, O M Kouznetsov, A Koval, Z Kral, F Krinner, Y Kulinich, F Kunne, K Kurek, R P Kurjata, A Kveton, K Lavickova, S Levorato, Y-S Lian, J Lichtenstadt, P-J Lin, R Longo, V E Lyubovitskij, A Maggiora, A Magnon, N Makins, N Makke, G K Mallot, A Maltsev, S A Mamon, B Marianski, A Martin, J Marzec, J Matoušek, T Matsuda, G Mattson, G V Meshcheryakov, M Meyer, W Meyer, Yu V Mikhailov, M Mikhasenko, E Mitrofanov, N Mitrofanov, Y Miyachi, A Moretti, A Nagaytsev, C Naim, D Neyret, J Nový, W-D Nowak, G Nukazuka, A S Nunes, A G Olshevsky, M Ostrick, D Panzieri, B Parsamyan, S Paul, H Pekeler, J-C Peng, M Pešek, D V Peshekhonov, M Pešková, N Pierre, S Platchkov, J Pochodzalla, V A Polyakov, J Pretz, M Quaresma, C Quintans, G Reicherz, C Riedl, T Rudnicki, D I Ryabchikov, A Rybnikov, A Rychter, V D Samoylenko, A Sandacz, S Sarkar, I A Savin, G Sbrizzai, H Schmieden, A Selyunin, L Sinha, M Slunecka, J Smolik, A Srnka, D Steffen, M Stolarski, O Subrt, M Sulc, H Suzuki, P Sznajder, S Tessaro, F Tessarotto, A Thiel, J Tomsa, F Tosello, A Townsend, V Tskhay, S Uhl, B I Vasilishin, A Vauth, B M Veit, J Veloso, B Ventura, A Vidon, M Virius, M Wagner, S Wallner, K Zaremba, P Zavada, M Zavertyaev, M Zemko, E Zemlyanichkina, Y Zhao, M Ziembicki

Affiliations

  1. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia.
  2. Department of Physics, University of Torino, 10125 Torino, Italy.
  3. Torino Section of INFN, 10125 Torino, Italy.
  4. CERN, 1211 Geneva 23, Switzerland.
  5. Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA.
  6. Czech Technical University in Prague, 16636 Prague, Czech Republic.
  7. National Centre for Nuclear Research, 02-093 Warsaw, Poland.
  8. Department of Physics, University of Aveiro, I3N, 3810-193 Aveiro, Portugal.
  9. Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
  10. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany.
  11. IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
  12. Institut für Kernphysik, Universität Mainz, 55099 Mainz, Germany.
  13. Faculty of Mathematics and Physics, Charles University, 18000 Prague, Czech Republic.
  14. Trieste Section of INFN, 34127 Trieste, Italy.
  15. Department of Physics, University of Trieste, 34127 Trieste, Italy.
  16. Tomsk Polytechnic University, 634050 Tomsk, Russia.
  17. Academia Sinica, Institute of Physics, Taipei 11529, Taiwan.
  18. Physik Department, Technische Universität München, 85748 Garching, Germany.
  19. Matrivani Institute of Experimental Research & Education, Calcutta-700 030, India.
  20. State Scientific Center Institute for High Energy Physics of National Research Center "Kurchatov Institute," 142281 Protvino, Russia.
  21. Yamagata University, Yamagata 992-8510, Japan.
  22. Institut für Experimentalphysik, Universität Bochum, 44780 Bochum, Germany.
  23. Physikalisches Institut, Universität Bonn, 53115 Bonn, Germany.
  24. Institute of Scientific Instruments of the CAS, 61264 Brno, Czech Republic.
  25. Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany.
  26. Technical University in Liberec, 46117 Liberec, Czech Republic.
  27. LIP, 1649-003 Lisbon, Portugal.
  28. University of Miyazaki, Miyazaki 889-2192, Japan.
  29. Lebedev Physical Institute, 119991 Moscow, Russia.
  30. Nagoya University, 464 Nagoya, Japan.
  31. School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel.
  32. Institute of Radioelectronics, Warsaw University of Technology, 00-665 Warsaw, Poland.

PMID: 34477443 DOI: 10.1103/PhysRevLett.127.082501

Abstract

The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(→Kπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.

Publication Types