Display options
Share it on

Cancer Discov. 2020 Nov;10(11):1635-1644. doi: 10.1158/2159-8290.CD-20-0466. Epub 2020 Oct 09.

Precision Prevention and Cancer Interception: The New Challenges of Liquid Biopsy.

Cancer discovery

Maria Jose Serrano, Maria Carmen Garrido-Navas, Juan Jose Diaz Mochon, Massimo Cristofanilli, Ignacio Gil-Bazo, Patrick Pauwels, Umberto Malapelle, Alessandro Russo, Jose A Lorente, Antonio J Ruiz-Rodriguez, Luis G Paz-Ares, Eduardo Vilar, Luis E Raez, Andres F Cardona, Christian Rolfo,

Affiliations

  1. GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain. [email protected] [email protected].
  2. Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Hospital Universitario Virgen de las Nieves Granada, Department of Medical Oncology, University of Granada, Granada, Spain.
  3. Department of Pathological Anatomy, Faculty of Medicine, Campus de Ciencias de la Salud, University of Granada, Granada, Spain.
  4. GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.
  5. DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Armilla, Granada, Spain.
  6. Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Granada, Spain.
  7. Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
  8. Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
  9. Department of Pathology, University Hospital Antwerp, Belgium & Center for Oncological Research (CORE), Antwerp University, Belgium.
  10. Department of Public Health, University of Naples "Federico II," Naples, Italy.
  11. Medical Oncology Unit, A.O. Papardo, Messina, Italy.
  12. Laboratory of Genetic Identification, Department of Legal Medicine, University of Granada, Granada, Spain.
  13. Unit of gastroenterology and hepatology, University Hospital Clínico San Cecilio, Granada, Spain.
  14. Division of Medical Oncology, University Hospital 12 de Octubre, Madrid, Spain.
  15. Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  16. Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, Florida.
  17. Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.
  18. Foundation for Clinical and Applied Cancer Research -FICMAC, Bogotá, Colombia.
  19. Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.

PMID: 33037026 DOI: 10.1158/2159-8290.CD-20-0466

Abstract

Despite major therapeutic progress, most advanced solid tumors are still incurable. Cancer interception is the active way to combat cancer onset, and development of this approach within high-risk populations seems a logical first step. Until now, strategies for the identification of high-risk subjects have been based on low-sensitivity and low-specificity assays. However, new liquid biopsy assays, "the Rosetta Stone of the new biomedicine era," with the ability to identify circulating biomarkers with unprecedented sensitivity, promise to revolutionize cancer management. This review focuses on novel liquid biopsy approaches and the applications to cancer interception. Cancer interception involves the identification of biomarkers associated with developing cancer, and includes genetic and epigenetic alterations, as well as circulating tumor cells and circulating epithelial cells in individuals at risk, and the implementation of therapeutic strategies to prevent the beginning of cancer and to stop its development. Large prospective studies are needed to confirm the potential role of liquid biopsy for early detection of precancer lesions and tumors.

©2020 American Association for Cancer Research.

References

  1. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18. - PubMed
  2. Espina C, Soerjomataram I, Forman D, Martín-Moreno JM. Cancer prevention policy in the EU: best practices are now well recognised; no reason for countries to lag behind. J Cancer Policy. 2018;18:40–51. - PubMed
  3. Andermann A. Revisting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ. 2008;86:317–9. - PubMed
  4. Wilson JM, Jungner YG. Principles and practice of screening for disease. J R Coll Gen Pract. 1968;16:318. - PubMed
  5. Rodríguez-Martínez A, de Miguel-Pérez D, Ortega FG, García-Puche JL, Robles-Fernández I, Exposito J, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res. 2019;21:21. - PubMed
  6. Beane J, Campbell JD, Lel J, Vick J, Spira A. Genomic approaches to accelerate cancer interception. Lancet Oncol. 2017;18:e494–502. - PubMed
  7. Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389:1931–40. - PubMed
  8. Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13:233–45. - PubMed
  9. Cruz T, López-Giraldo A, Noell G, Casas-Recasens S, Garcia T, Molins L, et al. Multi-level immune response network in mild-moderate chronic obstructive pulmonary disease (COPD). Respir Res. 2019;20:152. - PubMed
  10. McGrath JJC, Stampfli MR. The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis. 2018;10:S2011–7. - PubMed
  11. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18:e754–66. - PubMed
  12. Rolfo C, Mack PC, Scagliotti GV, Baas P, Barlesi F, Bivona TG, et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol. 2018;13:1248–68. - PubMed
  13. Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud J-M, Padovani B, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9:e111597. - PubMed
  14. Marquette C-H, Boutros J, Benzaquen J, Ferreira M, Pastre J, Pison C, et al. Circulating tumour cells as a potential biomarker for lung cancer screening: a prospective cohort study. Lancet Respir Med. 2020;8:709–16. - PubMed
  15. He Y, Shi J, Shi G, Xu X, Liu Q, Liu C, et al. Using the new CellCollector to capture circulating tumor cells from blood in different groups of pulmonary disease: a cohort study. Sci Rep. 2017;7:9542. - PubMed
  16. Doyle MF, Tracy RP, Parikh MA, Hoffman EA, Shimbo D, Austin JHM, et al. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One. 2017;12:e0173446. - PubMed
  17. Romero-Palacios PJ, Alcázar-Navarrete B, Díaz Mochón JJ, de Miguel-Pérez D, López Hidalgo JL, Garrido-Navas M, et al. Liquid biopsy beyond of cancer: circulating pulmonary cells as biomarkers of COPD aggressivity. Crit Rev Oncol Hematol. 2019;136:31–6. - PubMed
  18. Wozniak MB, Scelo G, Muller DC, Mukeria A, Zaridze D, Brennan P. Circulating MicroRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS One. 2015;10:e0125026. - PubMed
  19. Powrózek T, Krawczyk P, Kowalski DM, Winiarczyk K, Olszyna-Serementa M, Milanowski J. Plasma circulating microRNA-944 and microRNA-3662 as potential histologic type-specific early lung cancer biomarkers. Transl Res. 2015;166:315–23. - PubMed
  20. Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol. 2014;32:768–73. - PubMed
  21. Montani F, Marzi MJ, Dezi F, Dama E, Carletti RM, Bonizzi G, et al. miR-Test: a blood test for lung cancer early detection. J Natl Cancer Inst. 2015;107:djv063. - PubMed
  22. Beane JE, Mazzilli SA, Campbell JD, Duclos G, Krysan K, Moy C, et al. Molecular subtyping reveals immune alterations associated with progression of bronchial premalignant lesions. Nat Commun. 2019;10:1856. - PubMed
  23. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16:713–32. - PubMed
  24. Cappell MS. From colonic polyps to colon cancer: pathophysiology, clinical presentation, screening and colonoscopic therapy. Minerva Gastroenterol Dietol. 2007;53:351–73. - PubMed
  25. Issa IA, Noureddine M. Colorectal cancer screening: an updated review of the available options. World J Gastroenterol. 2017;23:5086. - PubMed
  26. Li D. Recent advances in colorectal cancer screening. Chronic Dis Transl Med. 2018;4:139–47. - PubMed
  27. Kim ER. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20:9872. - PubMed
  28. Delgado-Ureña M, Ortega FG, de Miguel-Pérez D, Rodriguez-Martínez A, García-Puche JL, Ilyine H, et al. Circulating tumor cells criteria (CyCAR) versus standard RECIST criteria for treatment response assessment in metastatic colorectal cancer patients. J Transl Med. 2018;16:251. - PubMed
  29. Normanno N, Cervantes A, Ciardiello F, De Luca A, Pinto C. The liquid biopsy in the management of colorectal cancer patients: current applications and future scenarios. Cancer Treat Rev. 2018;70:1–8. - PubMed
  30. Tsai W-S, Watson D, Chang Y, Hsieh B, Shao H-J, Wu J, et al. Circulating tumor cell count from a blood sample for colorectal cancer (CRC) prevention: A 627-patient prospective study. J Clin Oncol. 2019;37:485. - PubMed
  31. Pantel K, Deneve E, Nocca D, Coffy A, Vendrell J-P, Maudelonde T, et al. Circulating epithelial cells in patients with benign colon diseases. Clin Chem. 2012;58:936–40. - PubMed
  32. Cima I, Kong SL, Sengupta D, Tan IB, Phyo WM, Lee D, et al. Tumor-derived circulating endothelial cell clusters in colorectal cancer. Sci Transl Med. 2016;8:345ra89. - PubMed
  33. Herreros-Villanueva M, Duran-Sanchon S, Martín AC, Pérez-Palacios R, Vila-Navarro E, Marcuello M, et al. Plasma MicroRNA signature validation for early detection of colorectal cancer. Clin Transl Gastroenterol. 2019;10:e00003. - PubMed
  34. Cescon DW, Bratman SV, Chan SM, Siu LL. Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer. 2020;1:276–90. - PubMed
  35. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24. - PubMed
  36. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86. - PubMed
  37. Soliman SE-S, Alhanafy AM, Habib MSE, Hagag M, Ibrahem RAL. Serum circulating cell free DNA as potential diagnostic and prognostic biomarker in non small cell lung cancer. Biochem Biophys Reports. 2018;15:45–51. - PubMed
  38. Lampignano R, Neumann MHD, Weber S, Kloten V, Herdean A, Voss T, et al. Multicenter evaluation of circulating cell-free DNA extraction and downstream analyses for the development of standardized (Pre)analytical work flows. Clin Chem. 2020;66:149–60. - PubMed
  39. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. - PubMed
  40. Yeh CH. Somatic mutations in cancer-free individuals: a liquid biopsy connection. J Oncol Med. 2018;1:1–4. - PubMed
  41. Razavi P, Li BT, Brown DN, Jung B, Hubbell E, Shen R, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25:1928–37. - PubMed
  42. Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet. 2012;44:651–8. - PubMed
  43. Kammesheidt A, Chen A, Li S, Jaboni J, Anselmo M, Viloria T, et al. Mutation detection in cell free DNA from healthy donors. J Clin Oncol. 2016;34:e23054. - PubMed
  44. Fernandez-Cuesta L, Perdomo S, Avogbe PH, Leblay N, Delhomme TM, Gaborieau V, et al. Identification of circulating tumor DNA for the early detection of small-cell lung cancer. EBioMedicine. 2016;10:117–23. - PubMed
  45. Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, Liu MC, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020;31:745–59. - PubMed
  46. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC —challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15:577–86. - PubMed
  47. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9:eaan2415. - PubMed
  48. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30. - PubMed
  49. Rolfo C, Russo A. Liquid biopsy for early stage lung cancer moves ever closer. Nat Rev Clin Oncol. 2020;17:523–4. - PubMed
  50. Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369:eabb9601. - PubMed
  51. Chabon JJ, Hamilton EG, Kurtz DM, Esfahani MS, Moding EJ, Stehr H, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580:245–51. - PubMed
  52. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563:579–83. - PubMed
  53. Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12:eaax7533. - PubMed
  54. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:eaat4921. - PubMed
  55. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570:385–9. - PubMed
  56. Gai W, Sun K. Epigenetic biomarkers in cell-free DNA and applications in liquid biopsy. Genes. 2019;10:32. - PubMed
  57. Jensen SØ, Øgaard N, Ørntoft M-BW, Rasmussen MH, Bramsen JB, Kristensen H, et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer—a clinical biomarker discovery and validation study. Clin Epigenetics. 2019;11:158. - PubMed
  58. Wielscher M, Vierlinger K, Kegler U, Ziesche R, Gsur A, Weinhäusel A. Diagnostic performance of plasma DNA methylation profiles in lung cancer, pulmonary fibrosis and COPD. EBioMedicine. 2015;2:929–36. - PubMed
  59. Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 2019;9:2056–70. - PubMed
  60. Lamb YN, Dhillon S. Epi proColon((R)) 2.0 CE: a blood-based screening test for colorectal cancer. Mol Diagn Ther. 2017;21:225–32. - PubMed
  61. Jaffee EM, Van Dang C, Agus DB, Alexander BM, Anderson KC, Ashworth A, et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 2017;18:e653–706. - PubMed

MeSH terms

Publication Types