Display options
Share it on

J Exp Med. 2022 Jan 03;219(1). doi: 10.1084/jem.20201599. Epub 2021 Dec 09.

NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy.

The Journal of experimental medicine

Emma L Lewis, Rong Xu, Jean-Christophe Beltra, Shin Foong Ngiow, Jordana Cohen, Rahul Telange, Alexander Crane, Deirdre Sawinski, E John Wherry, Paige M Porrett

Affiliations

  1. Department of Obstetrics and Gynecology, The University of Pennsylvania, Philadelphia, PA.
  2. Department of Surgery, The University of Pennsylvania, Philadelphia, PA.
  3. Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA.
  4. Institute for Immunology, University of Pennsylvania, Philadelphia, PA.
  5. Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA.
  6. Department of Medicine, The University of Pennsylvania, Philadelphia, PA.
  7. Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL.
  8. Comprehensive Transplant Institute, The University of Alabama at Birmingham, Birmingham, AL.

PMID: 34882194 PMCID: PMC8666877 DOI: 10.1084/jem.20201599

Abstract

Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.

© 2021 Lewis et al.

Conflict of interest statement

Disclosures: J. Cohen reported grants from National Institutes of Health outside the submitted work. E.J. Wherry is consulting or is an advisor for Merck, Marengo, Janssen, Related Sciences, Synthekin

References

  1. Biol Reprod. 2013 Oct 31;89(4):102 - PubMed
  2. Transplantation. 2003 Apr 15;75(7):1075-7 - PubMed
  3. PLoS One. 2010 Nov 15;5(11):e13984 - PubMed
  4. Science. 2003 Apr 11;300(5617):337-9 - PubMed
  5. Cell. 2002 Jun 14;109(6):719-31 - PubMed
  6. Immunity. 2018 May 15;48(5):1029-1045.e5 - PubMed
  7. J Exp Med. 2012 Nov 19;209(12):2157-63 - PubMed
  8. J Leukoc Biol. 2017 Sep;102(3):601-615 - PubMed
  9. J Clin Invest. 2021 Jan 4;131(1): - PubMed
  10. Nature. 2019 Jul;571(7764):270-274 - PubMed
  11. Nature. 2006 Feb 9;439(7077):682-7 - PubMed
  12. Nature. 1958 Jun 21;181(4625):1735-6 - PubMed
  13. Curr Opin Immunol. 2010 Oct;22(5):552-9 - PubMed
  14. J Leukoc Biol. 2017 Apr;101(4):975-987 - PubMed
  15. Immunity. 2012 Dec 14;37(6):1130-44 - PubMed
  16. J Immunol. 1998 Apr 1;160(7):3086-90 - PubMed
  17. J Immunol. 2012 Jul 15;189(2):1072-80 - PubMed
  18. Nat Immunol. 2009 Jan;10(1):29-37 - PubMed
  19. Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12410-12415 - PubMed
  20. Cancer Cell. 2018 Apr 9;33(4):547-562 - PubMed
  21. Annu Rev Immunol. 2019 Apr 26;37:457-495 - PubMed
  22. Immunity. 2013 Jun 27;38(6):1250-60 - PubMed
  23. Nat Immunol. 2006 Nov;7(11):1166-73 - PubMed
  24. Immunity. 2010 Aug 27;33(2):229-40 - PubMed
  25. FEBS Lett. 2014 Aug 19;588(16):2571-9 - PubMed
  26. J Immunol. 2004 Dec 15;173(12):7331-8 - PubMed
  27. PLoS Comput Biol. 2014 Jul 24;10(7):e1003731 - PubMed
  28. Nat Immunol. 2000 Jul;1(1):47-53 - PubMed
  29. J Clin Invest. 2007 May;117(5):1399-411 - PubMed
  30. Transfusion. 2009 Sep;49(9):1825-35 - PubMed
  31. EMBO Rep. 2008 Jan;9(1):50-5 - PubMed
  32. Mol Hum Reprod. 2015 Nov;21(11):857-64 - PubMed
  33. Nature. 2019 Jul;571(7764):265-269 - PubMed
  34. J Exp Med. 2015 Jun 29;212(7):1125-37 - PubMed
  35. Nature. 2006 Jun 15;441(7095):890-3 - PubMed
  36. Immunity. 2016 Aug 16;45(2):358-73 - PubMed
  37. Front Immunol. 2017 Feb 28;8:170 - PubMed
  38. Immunity. 2007 Aug;27(2):281-95 - PubMed
  39. PLoS One. 2013 Dec 31;8(12):e84064 - PubMed
  40. Annu Rev Immunol. 2003;21:29-70 - PubMed
  41. J Exp Med. 1997 Sep 15;186(6):859-65 - PubMed
  42. Eur J Immunol. 2007 Jan;37(1):157-66 - PubMed
  43. J Immunol. 2017 Apr 1;198(7):2527-2533 - PubMed
  44. J Immunol. 2017 Nov 15;199(10):3406-3417 - PubMed
  45. Immunity. 2015 Feb 17;42(2):265-278 - PubMed
  46. Mol Immunol. 2013 Oct;55(3-4):283-91 - PubMed
  47. Nat Immunol. 2021 Aug;22(8):1008-1019 - PubMed
  48. Immunity. 2002 Jul;17(1):1-6 - PubMed
  49. Immunol Rev. 2006 Jun;211:81-92 - PubMed
  50. Immunity. 2012 Mar 23;36(3):374-87 - PubMed
  51. Nat Immunol. 2021 Feb;22(2):205-215 - PubMed
  52. Immunity. 2004 Aug;21(2):167-77 - PubMed
  53. Immunity. 2007 Oct;27(4):670-84 - PubMed
  54. Nat Protoc. 2019 Feb;14(2):482-517 - PubMed
  55. Immunol Rev. 2003 Dec;196:51-64 - PubMed
  56. Immunity. 1998 Jan;8(1):89-95 - PubMed
  57. Lancet. 2008 Jul 5;372(9632):49-53 - PubMed
  58. J Immunol. 2009 Jun 15;182(12):8080-93 - PubMed
  59. Science. 1996 Mar 1;271(5253):1276-8 - PubMed
  60. Front Immunol. 2018 Aug 08;9:1810 - PubMed
  61. N Engl J Med. 2018 Sep 20;379(12):1150-1160 - PubMed
  62. Am J Obstet Gynecol. 2015 Oct;213(4 Suppl):S173-81 - PubMed
  63. Am J Transplant. 2018 May;18(5):1059-1067 - PubMed
  64. Immunity. 2016 Aug 16;45(2):389-401 - PubMed
  65. J Immunol. 1989 Jul 15;143(2):718-26 - PubMed
  66. BMC Genomics. 2006 Feb 28;7:37 - PubMed
  67. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):705-8 - PubMed
  68. Am J Transplant. 2008 Jan;8(1):95-102 - PubMed
  69. Trends Immunol. 2014 Feb;35(2):51-60 - PubMed
  70. Nat Rev Cancer. 2020 Apr;20(4):218-232 - PubMed
  71. Nature. 2019 Jul;571(7764):211-218 - PubMed
  72. Lancet. 1997 Aug 16;350(9076):485-7 - PubMed
  73. Transpl Immunol. 2018 Oct;50:34-42 - PubMed
  74. Annu Rev Immunol. 2018 Apr 26;36:461-488 - PubMed
  75. Blood. 2003 Jul 1;102(1):388-93 - PubMed
  76. Hum Reprod. 1991 Feb;6(2):294-8 - PubMed
  77. Transplantation. 2007 Jul 27;84(2):137-43 - PubMed
  78. Immunology. 2010 Nov;131(3):426-37 - PubMed
  79. Nat Immunol. 2005 May;6(5):472-80 - PubMed
  80. Cell Rep. 2020 Jun 23;31(12):107784 - PubMed
  81. J Biol Chem. 2003 Sep 19;278(38):35940-9 - PubMed
  82. Sci Rep. 2016 Jun 27;6:28619 - PubMed
  83. J Exp Med. 2011 Jan 17;208(1):135-48 - PubMed
  84. Am J Transplant. 2013 Mar;13(3):746-53 - PubMed
  85. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):385-390 - PubMed
  86. Science. 2012 Nov 30;338(6111):1220-5 - PubMed
  87. Nat Commun. 2019 Apr 3;10(1):1523 - PubMed
  88. Science. 2016 Dec 2;354(6316):1165-1169 - PubMed
  89. Am J Transplant. 2003 Nov;3(11):1355-62 - PubMed
  90. Semin Immunol. 2013 Nov 15;25(4):313-20 - PubMed
  91. Science. 2016 Dec 2;354(6316):1160-1165 - PubMed
  92. Cell Mol Immunol. 2019 Apr;16(4):324-333 - PubMed
  93. J Immunol. 2010 Oct 1;185(7):4470-7 - PubMed
  94. Hum Immunol. 2001 Mar;62(3):201-7 - PubMed
  95. Crit Rev Immunol. 2016;36(6):485-510 - PubMed
  96. Nat Immunol. 2004 Sep;5(9):883-90 - PubMed
  97. J Exp Med. 2005 Sep 5;202(5):637-50 - PubMed
  98. J Immunol Res. 2016;2016:8941260 - PubMed

Publication Types

Grant support