Display options
Share it on

J Exp Med. 2022 Jan 03;219(1). doi: 10.1084/jem.20201599. Epub 2021 Dec 09.

NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy.

The Journal of experimental medicine

Emma L Lewis, Rong Xu, Jean-Christophe Beltra, Shin Foong Ngiow, Jordana Cohen, Rahul Telange, Alexander Crane, Deirdre Sawinski, E John Wherry, Paige M Porrett

Affiliations

  1. Department of Obstetrics and Gynecology, The University of Pennsylvania, Philadelphia, PA.
  2. Department of Surgery, The University of Pennsylvania, Philadelphia, PA.
  3. Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA.
  4. Institute for Immunology, University of Pennsylvania, Philadelphia, PA.
  5. Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA.
  6. Department of Medicine, The University of Pennsylvania, Philadelphia, PA.
  7. Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL.
  8. Comprehensive Transplant Institute, The University of Alabama at Birmingham, Birmingham, AL.

PMID: 34882194 PMCID: PMC8666877 DOI: 10.1084/jem.20201599

Abstract

Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.

© 2021 Lewis et al.

Conflict of interest statement

Disclosures: J. Cohen reported grants from National Institutes of Health outside the submitted work. E.J. Wherry is consulting or is an advisor for Merck, Marengo, Janssen, Related Sciences, Synthekin

References

  1. Biol Reprod. 2013 Oct 31;89(4):102 - PubMed
  2. Transplantation. 2003 Apr 15;75(7):1075-7 - PubMed
  3. PLoS One. 2010 Nov 15;5(11):e13984 - PubMed
  4. Science. 2003 Apr 11;300(5617):337-9 - PubMed
  5. Cell. 2002 Jun 14;109(6):719-31 - PubMed
  6. Immunity. 2018 May 15;48(5):1029-1045.e5 - PubMed
  7. J Exp Med. 2012 Nov 19;209(12):2157-63 - PubMed
  8. J Leukoc Biol. 2017 Sep;102(3):601-615 - PubMed
  9. Nature. 2019 Jul;571(7764):270-274 - PubMed
  10. Nature. 2006 Feb 9;439(7077):682-7 - PubMed
  11. Nature. 1958 Jun 21;181(4625):1735-6 - PubMed
  12. Curr Opin Immunol. 2010 Oct;22(5):552-9 - PubMed
  13. J Leukoc Biol. 2017 Apr;101(4):975-987 - PubMed
  14. Immunity. 2012 Dec 14;37(6):1130-44 - PubMed
  15. J Immunol. 1998 Apr 1;160(7):3086-90 - PubMed
  16. J Immunol. 2012 Jul 15;189(2):1072-80 - PubMed
  17. Nat Immunol. 2009 Jan;10(1):29-37 - PubMed
  18. Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12410-12415 - PubMed
  19. Cancer Cell. 2018 Apr 9;33(4):547-562 - PubMed
  20. Annu Rev Immunol. 2019 Apr 26;37:457-495 - PubMed
  21. Immunity. 2013 Jun 27;38(6):1250-60 - PubMed
  22. Nat Immunol. 2006 Nov;7(11):1166-73 - PubMed
  23. Immunity. 2010 Aug 27;33(2):229-40 - PubMed
  24. FEBS Lett. 2014 Aug 19;588(16):2571-9 - PubMed
  25. J Immunol. 2004 Dec 15;173(12):7331-8 - PubMed
  26. PLoS Comput Biol. 2014 Jul 24;10(7):e1003731 - PubMed
  27. Nat Immunol. 2000 Jul;1(1):47-53 - PubMed
  28. J Clin Invest. 2007 May;117(5):1399-411 - PubMed
  29. Transfusion. 2009 Sep;49(9):1825-35 - PubMed
  30. EMBO Rep. 2008 Jan;9(1):50-5 - PubMed
  31. Mol Hum Reprod. 2015 Nov;21(11):857-64 - PubMed
  32. Nature. 2019 Jul;571(7764):265-269 - PubMed
  33. J Exp Med. 2015 Jun 29;212(7):1125-37 - PubMed
  34. Nature. 2006 Jun 15;441(7095):890-3 - PubMed
  35. Immunity. 2016 Aug 16;45(2):358-73 - PubMed
  36. Front Immunol. 2017 Feb 28;8:170 - PubMed
  37. Immunity. 2007 Aug;27(2):281-95 - PubMed
  38. PLoS One. 2013 Dec 31;8(12):e84064 - PubMed
  39. Annu Rev Immunol. 2003;21:29-70 - PubMed
  40. J Exp Med. 1997 Sep 15;186(6):859-65 - PubMed
  41. Eur J Immunol. 2007 Jan;37(1):157-66 - PubMed
  42. J Immunol. 2017 Apr 1;198(7):2527-2533 - PubMed
  43. J Immunol. 2017 Nov 15;199(10):3406-3417 - PubMed
  44. Immunity. 2015 Feb 17;42(2):265-278 - PubMed
  45. Mol Immunol. 2013 Oct;55(3-4):283-91 - PubMed
  46. Nat Immunol. 2021 Aug;22(8):1008-1019 - PubMed
  47. Immunity. 2002 Jul;17(1):1-6 - PubMed
  48. Immunol Rev. 2006 Jun;211:81-92 - PubMed
  49. Immunity. 2012 Mar 23;36(3):374-87 - PubMed
  50. Nat Immunol. 2021 Feb;22(2):205-215 - PubMed
  51. Immunity. 2004 Aug;21(2):167-77 - PubMed
  52. Immunity. 2007 Oct;27(4):670-84 - PubMed
  53. Nat Protoc. 2019 Feb;14(2):482-517 - PubMed
  54. Immunol Rev. 2003 Dec;196:51-64 - PubMed
  55. Immunity. 1998 Jan;8(1):89-95 - PubMed
  56. Lancet. 2008 Jul 5;372(9632):49-53 - PubMed
  57. J Immunol. 2009 Jun 15;182(12):8080-93 - PubMed
  58. Science. 1996 Mar 1;271(5253):1276-8 - PubMed
  59. Front Immunol. 2018 Aug 08;9:1810 - PubMed
  60. N Engl J Med. 2018 Sep 20;379(12):1150-1160 - PubMed
  61. Am J Obstet Gynecol. 2015 Oct;213(4 Suppl):S173-81 - PubMed
  62. Am J Transplant. 2018 May;18(5):1059-1067 - PubMed
  63. Immunity. 2016 Aug 16;45(2):389-401 - PubMed
  64. J Immunol. 1989 Jul 15;143(2):718-26 - PubMed
  65. BMC Genomics. 2006 Feb 28;7:37 - PubMed
  66. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):705-8 - PubMed
  67. Am J Transplant. 2008 Jan;8(1):95-102 - PubMed
  68. Trends Immunol. 2014 Feb;35(2):51-60 - PubMed
  69. Nat Rev Cancer. 2020 Apr;20(4):218-232 - PubMed
  70. Nature. 2019 Jul;571(7764):211-218 - PubMed
  71. Lancet. 1997 Aug 16;350(9076):485-7 - PubMed
  72. Transpl Immunol. 2018 Oct;50:34-42 - PubMed
  73. Annu Rev Immunol. 2018 Apr 26;36:461-488 - PubMed
  74. Blood. 2003 Jul 1;102(1):388-93 - PubMed
  75. Hum Reprod. 1991 Feb;6(2):294-8 - PubMed
  76. Transplantation. 2007 Jul 27;84(2):137-43 - PubMed
  77. Immunology. 2010 Nov;131(3):426-37 - PubMed
  78. Nat Immunol. 2005 May;6(5):472-80 - PubMed
  79. Cell Rep. 2020 Jun 23;31(12):107784 - PubMed
  80. J Biol Chem. 2003 Sep 19;278(38):35940-9 - PubMed
  81. Sci Rep. 2016 Jun 27;6:28619 - PubMed
  82. J Exp Med. 2011 Jan 17;208(1):135-48 - PubMed
  83. Am J Transplant. 2013 Mar;13(3):746-53 - PubMed
  84. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):385-390 - PubMed
  85. Science. 2012 Nov 30;338(6111):1220-5 - PubMed
  86. Nat Commun. 2019 Apr 3;10(1):1523 - PubMed
  87. Science. 2016 Dec 2;354(6316):1165-1169 - PubMed
  88. Am J Transplant. 2003 Nov;3(11):1355-62 - PubMed
  89. Semin Immunol. 2013 Nov 15;25(4):313-20 - PubMed
  90. Science. 2016 Dec 2;354(6316):1160-1165 - PubMed
  91. Cell Mol Immunol. 2019 Apr;16(4):324-333 - PubMed
  92. J Immunol. 2010 Oct 1;185(7):4470-7 - PubMed
  93. Hum Immunol. 2001 Mar;62(3):201-7 - PubMed
  94. Crit Rev Immunol. 2016;36(6):485-510 - PubMed
  95. Nat Immunol. 2004 Sep;5(9):883-90 - PubMed
  96. J Exp Med. 2005 Sep 5;202(5):637-50 - PubMed
  97. J Immunol Res. 2016;2016:8941260 - PubMed

Publication Types

Grant support