Display options
Share it on

Br J Nutr. 2016 Nov 08;1-12. doi: 10.1017/S0007114516003755. Epub 2016 Nov 08.

Development and validation of empirical indices to assess the insulinaemic potential of diet and lifestyle.

The British journal of nutrition

Fred K Tabung, Weike Wang, Teresa T Fung, Frank B Hu, Stephanie A Smith-Warner, Jorge E Chavarro, Charles S Fuchs, Walter C Willett, Edward L Giovannucci

Affiliations

  1. 1Department of Nutrition,Harvard T.H. Chan School of Public Health,Boston, MA 02115,USA.
  2. 4Channing Division of Network Medicine,Brigham and Women's Hospital,Boston, MA 02115,USA.

PMID: 27821188 PMCID: PMC5623113 DOI: 10.1017/S0007114516003755

Abstract

The glycaemic and insulin indices assess postprandial glycaemic and insulin response to foods, respectively, which may not reflect the long-term effects of diet on insulin response. We developed and evaluated the validity of four empirical indices to assess the insulinaemic potential of usual diets and lifestyles, using dietary, lifestyle and biomarker data from the Nurses' Health Study (NHS, n 5812 for hyperinsulinaemia, n 3929 for insulin resistance). The four indices were as follows: the empirical dietary index for hyperinsulinaemia (EDIH) and the empirical lifestyle index for hyperinsulinaemia (ELIH); the empirical dietary index for insulin resistance (EDIR) and the empirical lifestyle index for insulin resistance (ELIR). We entered thirty-nine FFQ-derived food groups in stepwise linear regression models, and defined indices as patterns most predictive of fasting plasma C-peptide, for the hyperinsulinaemia pathway (EDIH and ELIH), and of theTAG:HDL-cholesterol ratio, for the insulin-resistance pathway (EDIR and ELIR). We evaluated the validity of indices in two independent samples from NHS-II and Health Professionals Follow-up Study (HPFS) using multivariable-adjusted linear regression analyses to calculate relative concentrations of biomarkers. The EDIH is comprised of eighteen food groups; thirteen were positively associated with C-peptide and five were inversely associated. The EDIR is comprised of eighteen food groups; ten were positively associated with TAG:HDL-cholesterol and eight were inversely associated. Lifestyle indices had fewer dietary components, and included BMI and physical activity as components. In the validation samples, all indices significantly predicted biomarker concentrations - for example, the relative concentrations of the corresponding biomarkers comparing extreme index quintiles in the HPFS were EDIH, 1·29 (95 % CI 1·22, 1·37); ELIH, 1·78 (95 % CI 1·68, 1·88); EDIR, 1·44 (95 % CI 1·34, 1·55); and ELIR, 2·03 (95 % CI 1·89, 2·19); all P trend<0·0001. The robust associations of these novel hypothesis-driven indices with insulin response biomarker concentrations suggest their usefulness in assessing the ability of whole diets and lifestyles to stimulate and/or sustain insulin secretion.

Keywords: EDIH empirical dietary index for hyperinsulinaemia; EDIR empirical dietary index for insulin resistance; ELIH empirical lifestyle index for hyperinsulinaemia; ELIR empirical lifestyle index for insulin resistance; GI glycaemic index; HPFS Health Professionals Follow-up Study; NHS Nurses’ Health Study; PA physical activity; C-peptide; Dietary patterns; HDL; Hyperinsulinaemia; Hypothesis-driven indices; Insulin resistance; Lifestyle indices; TAG

References

  1. Am J Prev Med. 2015 Feb;48(2):128-135 - PubMed
  2. Cancer Causes Control. 2012 Jun;23(6):959-65 - PubMed
  3. Int J Epidemiol. 1994 Oct;23(5):991-9 - PubMed
  4. Am J Clin Nutr. 1999 Feb;69(2):243-9 - PubMed
  5. Scand J Clin Lab Invest. 2000 Dec;60(8):687-93 - PubMed
  6. Med Sci Sports Exerc. 2012 May;44(5):793-9 - PubMed
  7. Am J Clin Nutr. 2006 Feb;83(2):275-83 - PubMed
  8. Ann Epidemiol. 2015 Jun;25(6):398-405 - PubMed
  9. Circulation. 2004 Nov 2;110(18):2824-30 - PubMed
  10. Nat Rev Cancer. 2005 May;5(5):388-96 - PubMed
  11. Am J Prev Med. 2011 Oct;41(4):366-75 - PubMed
  12. Am J Clin Nutr. 1981 Mar;34(3):362-6 - PubMed
  13. Metabolism. 2015 Oct;64(10):1324-33 - PubMed
  14. Am J Epidemiol. 2008 Mar 15;167(6):653-66 - PubMed
  15. Cancer Epidemiol Biomarkers Prev. 2010 Jun;19(6):1441-52 - PubMed
  16. N Engl J Med. 2004 Dec 16;351(25):2599-610 - PubMed
  17. Cancer Causes Control. 2013 Oct;24(10):1837-47 - PubMed
  18. J Clin Invest. 2000 Aug;106(4):473-81 - PubMed
  19. Metabolism. 2004 Nov;53(11):1462-6 - PubMed
  20. Diabet Med. 2013 Jul;30(7):803-17 - PubMed
  21. PLoS One. 2013 Jul 15;8(7):e69285 - PubMed
  22. Crit Rev Clin Lab Sci. 1984;19(4):297-352 - PubMed
  23. Stat Med. 2003 Sep 15;22(17):2723-36 - PubMed
  24. Am J Epidemiol. 2001 Dec 15;154(12):1107-12 - PubMed
  25. Breast Cancer Res Treat. 2012 Apr;132(3):1157-62 - PubMed
  26. Physiol Rev. 1995 Jul;75(3):473-86 - PubMed
  27. Am J Clin Nutr. 2011 Jul;94(1):182-90 - PubMed
  28. Cholesterol. 2012;2012:794252 - PubMed
  29. J Lipid Res. 2013 Oct;54(10):2795-9 - PubMed
  30. Diabetes Care. 2005 Jun;28(6):1390-6 - PubMed
  31. Arch Physiol Biochem. 2009 Oct;115(4):227-39 - PubMed
  32. Epidemiology. 2016 May;27(3):378-88 - PubMed
  33. Circulation. 2007 Jul 31;116(5):480-8 - PubMed
  34. Curr Opin Lipidol. 2002 Feb;13(1):3-9 - PubMed
  35. Am J Epidemiol. 1985 Jul;122(1):51-65 - PubMed
  36. Diabetes Care. 1997 Jan;20(1):26-31 - PubMed
  37. Cancer Causes Control. 1995 Mar;6(2):164-79 - PubMed
  38. Ann Intern Med. 2003 Nov 18;139(10):802-9 - PubMed
  39. Am Fam Physician. 2006 Jun 1;73(11):1942-8 - PubMed
  40. J Natl Cancer Inst. 1995 Sep 6;87(17):1297-302 - PubMed
  41. Br J Nutr. 2015 Jan 28;113(2):292-8 - PubMed
  42. Am J Epidemiol. 1992 May 15;135(10):1114-26; discussion 1127-36 - PubMed
  43. Epidemiology. 1996 Jan;7(1):81-6 - PubMed
  44. Int J Sports Med. 2000 Jan;21(1):1-12 - PubMed
  45. J Am Diet Assoc. 1993 Jul;93(7):790-6 - PubMed
  46. Diab Vasc Dis Res. 2013 Jul;10(4):346-52 - PubMed
  47. Am J Clin Nutr. 2001 Jan;73(1):1-2 - PubMed
  48. Cancer Causes Control. 2015 Mar;26(3):399-408 - PubMed
  49. Int J Cancer. 2015 Nov 1;137(9):2149-54 - PubMed

Publication Types

Grant support