Display options
Share it on

Front Chem. 2020 Sep 09;8:783. doi: 10.3389/fchem.2020.00783. eCollection 2020.

Enhancing the Mitochondrial Uptake of Phosphonium Cations by Carboxylic Acid Incorporation.

Frontiers in chemistry

Laura Pala, Hans M Senn, Stuart T Caldwell, Tracy A Prime, Stefan Warrington, Thomas P Bright, Hiran A Prag, Claire Wilson, Michael P Murphy, Richard C Hartley

Affiliations

  1. School of Chemistry, University of Glasgow, Glasgow, United Kingdom.
  2. MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.
  3. Department of Medicine, University of Cambridge, Cambridge, United Kingdom.

PMID: 33033715 PMCID: PMC7509049 DOI: 10.3389/fchem.2020.00783

Abstract

There is considerable interest in developing drugs and probes targeted to mitochondria in order to understand and treat the many pathologies associated with mitochondrial dysfunction. The large membrane potential, negative inside, across the mitochondrial inner membrane enables delivery of molecules conjugated to lipophilic phosphonium cations to the organelle. Due to their combination of charge and hydrophobicity, quaternary triarylphosphonium cations rapidly cross biological membranes without the requirement for a carrier. Their extent of uptake is determined by the magnitude of the mitochondrial membrane potential, as described by the Nernst equation. To further enhance this uptake here we explored whether incorporation of a carboxylic acid into a quaternary triarylphosphonium cation would enhance its mitochondrial uptake in response to both the membrane potential and the mitochondrial pH gradient (alkaline inside). Accumulation of arylpropionic acid derivatives depended on both the membrane potential and the pH gradient. However, acetic or benzoic derivatives did not accumulate, due to their lowered pK

Copyright © 2020 Pala, Senn, Caldwell, Prime, Warrington, Bright, Prag, Wilson, Murphy and Hartley.

Keywords: computational chemistry; membrane permeation; membrane potential; mitochondria; mitochondria-targeting; pH gradient; phosphonium

References

  1. J Phys Chem B. 2011 Dec 15;115(49):14556-62 - PubMed
  2. Free Radic Biol Med. 2015 Dec;89:668-78 - PubMed
  3. Redox Biol. 2013;1(1):86-93 - PubMed
  4. J Chem Theory Comput. 2010 Sep 14;6(9):2872-87 - PubMed
  5. Free Radic Biol Med. 2015 Dec;89:883-94 - PubMed
  6. J Chem Phys. 2010 Apr 21;132(15):154104 - PubMed
  7. J Comput Chem. 2011 May;32(7):1456-65 - PubMed
  8. Acc Chem Res. 2016 Sep 20;49(9):1893-902 - PubMed
  9. J Bioenerg Biomembr. 2013 Feb;45(1-2):165-73 - PubMed
  10. J Phys Chem B. 2009 May 7;113(18):6378-96 - PubMed
  11. Phys Chem Chem Phys. 2006 Mar 7;8(9):1057-65 - PubMed
  12. Trends Pharmacol Sci. 2012 Jun;33(6):341-52 - PubMed
  13. Chem Rev. 2005 Aug;105(8):2999-3093 - PubMed
  14. Phys Rev Lett. 2003 Oct 3;91(14):146401 - PubMed
  15. J Am Chem Soc. 2014 Jun 11;136(23):8418-29 - PubMed
  16. Chembiochem. 2009 Aug 17;10(12):1939-50 - PubMed
  17. Biochim Biophys Acta. 2014 Feb;1840(2):923-30 - PubMed
  18. European J Org Chem. 2015 Sep 1;2015(27):5919-5924 - PubMed
  19. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5407-12 - PubMed
  20. Antioxid Redox Signal. 2011 Dec 15;15(12):3021-38 - PubMed
  21. Biochem J. 2006 Nov 15;400(1):199-208 - PubMed
  22. Bioconjug Chem. 2017 Feb 15;28(2):590-599 - PubMed
  23. Cell. 2012 Mar 16;148(6):1145-59 - PubMed
  24. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 - PubMed
  25. Nat Rev Drug Discov. 2018 Dec;17(12):865-886 - PubMed
  26. Nat Rev Dis Primers. 2016 Oct 20;2:16080 - PubMed
  27. Phys Chem Chem Phys. 2019 Nov 14;21(42):23355-23363 - PubMed

Publication Types

Grant support