Display options
Share it on

Endocrinol Metab (Seoul). 2020 Sep;35(3):507-514. doi: 10.3803/EnM.2020.303. Epub 2020 Sep 22.

Systems Biology: A Multi-Omics Integration Approach to Metabolism and the Microbiome.

Endocrinology and metabolism (Seoul, Korea)

Jang Won Son, Saeed Shoaie, Sunjae Lee

Affiliations

  1. Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea.
  2. Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
  3. Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.

PMID: 32981293 PMCID: PMC7520591 DOI: 10.3803/EnM.2020.303

Abstract

The complex and dynamic nature of human physiology, as exemplified by metabolism, has often been overlooked due to the lack of quantitative and systems approaches. Recently, systems biology approaches have pushed the boundaries of our current understanding of complex biochemical, physiological, and environmental interactions, enabling proactive medicine in the near future. From this perspective, we review how state-of-the-art computational modelling of human metabolism, i.e., genome-scale metabolic modelling, could be used to identify the metabolic footprints of diseases, to guide the design of personalized treatments, and to estimate the microbiome contributions to host metabolism. These state-of-the-art models can serve as a scaffold for integrating multi-omics data, thereby enabling the identification of signatures of dysregulated metabolism by systems approaches. For example, increased plasma mannose levels due to decreased uptake in the liver have been identified as a potential biomarker of early insulin resistance by multi-omics approaches. In addition, we also review the emerging axis of human physiology and the human microbiome, discussing its contribution to host metabolism and quantitative approaches to study its variations in individuals.

Keywords: Gastrointestinal microbiome; Metabolism; Systems biology

References

  1. Curr Opin Biotechnol. 2015 Aug;34:91-7 - PubMed
  2. Nat Commun. 2019 Mar 4;10(1):1014 - PubMed
  3. Nucleic Acids Res. 2018 Jan 4;46(D1):D595-D600 - PubMed
  4. Nat Rev Genet. 2018 May;19(5):299-310 - PubMed
  5. Science. 2017 Jun 23;356(6344): - PubMed
  6. Cell Metab. 2016 Jul 12;24(1):172-84 - PubMed
  7. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 - PubMed
  8. Nat Biotechnol. 2017 Aug;35(8):747-756 - PubMed
  9. Mol Syst Biol. 2017 Mar 2;13(3):916 - PubMed
  10. Nat Rev Genet. 2019 Jun;20(6):341-355 - PubMed
  11. Nat Rev Gastroenterol Hepatol. 2018 Jun;15(6):365-377 - PubMed
  12. JAMA. 2017 Nov 28;318(20):1985-1993 - PubMed
  13. FEBS Lett. 2010 Jun 18;584(12):2556-64 - PubMed
  14. PeerJ. 2019 Jul 26;7:e7359 - PubMed
  15. Mol Syst Biol. 2014 Mar 19;10:721 - PubMed
  16. Sci Signal. 2020 Mar 24;13(624): - PubMed
  17. Nat Med. 2019 Jul;25(7):1096-1103 - PubMed
  18. Nature. 2015 Jun 18;522(7556):270-3 - PubMed
  19. Nat Commun. 2014;5:3083 - PubMed
  20. Cell Death Dis. 2014 May 29;5:e1256 - PubMed
  21. Nat Rev Genet. 2011 Jan;12(1):56-68 - PubMed
  22. PLoS Comput Biol. 2012;8(5):e1002518 - PubMed
  23. mSystems. 2018 Nov 13;3(6): - PubMed
  24. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2685-9 - PubMed
  25. Cell Metab. 2017 Mar 7;25(3):572-579 - PubMed
  26. Genome Med. 2015 Sep 29;7:102 - PubMed
  27. Cell Metab. 2018 Mar 6;27(3):559-571.e5 - PubMed
  28. Nat Rev Gastroenterol Hepatol. 2016 Sep;13(9):508-16 - PubMed
  29. Cell Rep. 2015 May 12;11(6):921-933 - PubMed
  30. Nat Rev Microbiol. 2018 Jun 24;16:540-550 - PubMed
  31. Mol Syst Biol. 2013;9:649 - PubMed
  32. Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503 - PubMed
  33. Nature. 2012 Oct 4;490(7418):55-60 - PubMed
  34. Immunity. 2019 Jul 16;51(1):77-89.e6 - PubMed
  35. Nat Rev Microbiol. 2016 Aug;14(8):508-22 - PubMed
  36. NPJ Syst Biol Appl. 2017 Jan 31;3:3 - PubMed
  37. Cell Rep. 2018 Sep 18;24(12):3087-3098 - PubMed
  38. Science. 2018 Jan 5;359(6371):97-103 - PubMed
  39. Cell Syst. 2017 Sep 27;5(3):168-175 - PubMed
  40. Mol Syst Biol. 2020 Apr;16(4):e9495 - PubMed
  41. Annu Rev Biochem. 2017 Jun 20;86:245-275 - PubMed
  42. EBioMedicine. 2019 Feb;40:471-487 - PubMed
  43. Cell. 2015 Nov 19;163(5):1079-1094 - PubMed
  44. Bioinformatics. 2019 May 1;35(9):1544-1552 - PubMed
  45. Nature. 2011 May 12;473(7346):174-80 - PubMed
  46. Nat Biotechnol. 2014 Aug;32(8):822-8 - PubMed
  47. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11874-E11883 - PubMed
  48. Cell. 2016 Jun 2;165(6):1332-1345 - PubMed
  49. J Proteome Res. 2014 Nov 7;13(11):5106-19 - PubMed
  50. Cell Metab. 2015 Aug 4;22(2):320-31 - PubMed
  51. Cell. 2015 May 21;161(5):971-987 - PubMed
  52. Sci Rep. 2013;3:2532 - PubMed
  53. Nature. 2019 Apr;568(7753):505-510 - PubMed
  54. Nature. 2020 Jun;582(7811):301-303 - PubMed

Substances

MeSH terms

Publication Types

Grant support