Display options
Share it on

Eur J Immunol. 2021 Dec;51(12):2708-3145. doi: 10.1002/eji.202170126. Epub 2021 Dec 07.

Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition).

European journal of immunology

Andrea Cossarizza, Hyun-Dong Chang, Andreas Radbruch, Sergio Abrignani, Richard Addo, Mübeccel Akdis, Immanuel Andrä, Francesco Andreata, Francesco Annunziato, Eduardo Arranz, Petra Bacher, Sudipto Bari, Vincenzo Barnaba, Joana Barros-Martins, Dirk Baumjohann, Cristian G Beccaria, David Bernardo, Dominic A Boardman, Jessica Borger, Chotima Böttcher, Leonie Brockmann, Marie Burns, Dirk H Busch, Garth Cameron, Ilenia Cammarata, Antonino Cassotta, Yinshui Chang, Fernando Gabriel Chirdo, Eleni Christakou, Luka Čičin-Šain, Laura Cook, Alexandra J Corbett, Rebecca Cornelis, Lorenzo Cosmi, Martin S Davey, Sara De Biasi, Gabriele De Simone, Genny Del Zotto, Michael Delacher, Francesca Di Rosa, James Di Santo, Andreas Diefenbach, Jun Dong, Thomas Dörner, Regine J Dress, Charles-Antoine Dutertre, Sidonia B G Eckle, Pascale Eede, Maximilien Evrard, Christine S Falk, Markus Feuerer, Simon Fillatreau, Aida Fiz-Lopez, Marie Follo, Gemma A Foulds, Julia Fröbel, Nicola Gagliani, Giovanni Galletti, Anastasia Gangaev, Natalio Garbi, José Antonio Garrote, Jens Geginat, Nicholas A Gherardin, Lara Gibellini, Florent Ginhoux, Dale I Godfrey, Paola Gruarin, Claudia Haftmann, Leo Hansmann, Christopher M Harpur, Adrian C Hayday, Guido Heine, Daniela Carolina Hernández, Martin Herrmann, Oliver Hoelsken, Qing Huang, Samuel Huber, Johanna E Huber, Jochen Huehn, Michael Hundemer, William Y K Hwang, Matteo Iannacone, Sabine M Ivison, Hans-Martin Jäck, Peter K Jani, Baerbel Keller, Nina Kessler, Steven Ketelaars, Laura Knop, Jasmin Knopf, Hui-Fern Koay, Katja Kobow, Katharina Kriegsmann, H Kristyanto, Andreas Krueger, Jenny F Kuehne, Heike Kunze-Schumacher, Pia Kvistborg, Immanuel Kwok, Daniela Latorre, Daniel Lenz, Megan K Levings, Andreia C Lino, Francesco Liotta, Heather M Long, Enrico Lugli, Katherine N MacDonald, Laura Maggi, Mala K Maini, Florian Mair, Calin Manta, Rudolf Armin Manz, Mir-Farzin Mashreghi, Alessio Mazzoni, James McCluskey, Henrik E Mei, Fritz Melchers, Susanne Melzer, Dirk Mielenz, Leticia Monin, Lorenzo Moretta, Gabriele Multhoff, Luis Enrique Muñoz, Miguel Muñoz-Ruiz, Franziska Muscate, Ambra Natalini, Katrin Neumann, Lai Guan Ng, Antonia Niedobitek, Jana Niemz, Larissa Nogueira Almeida, Samuele Notarbartolo, Lennard Ostendorf, Laura J Pallett, Amit A Patel, Gulce Itir Percin, Giovanna Peruzzi, Marcello Pinti, A Graham Pockley, Katharina Pracht, Immo Prinz, Irma Pujol-Autonell, Nadia Pulvirenti, Linda Quatrini, Kylie M Quinn, Helena Radbruch, Hefin Rhys, Maria B Rodrigo, Chiara Romagnani, Carina Saggau, Shimon Sakaguchi, Federica Sallusto, Lieke Sanderink, Inga Sandrock, Christine Schauer, Alexander Scheffold, Hans U Scherer, Matthias Schiemann, Frank A Schildberg, Kilian Schober, Janina Schoen, Wolfgang Schuh, Thomas Schüler, Axel R Schulz, Sebastian Schulz, Julia Schulze, Sonia Simonetti, Jeeshan Singh, Katarzyna M Sitnik, Regina Stark, Sarah Starossom, Christina Stehle, Franziska Szelinski, Leonard Tan, Attila Tarnok, Julia Tornack, Timothy I M Tree, Jasper J P van Beek, Willem van de Veen, Klaas van Gisbergen, Chiara Vasco, Nikita A Verheyden, Anouk von Borstel, Kirsten A Ward-Hartstonge, Klaus Warnatz, Claudia Waskow, Annika Wiedemann, Anneke Wilharm, James Wing, Oliver Wirz, Jens Wittner, Jennie H M Yang, Juhao Yang

Affiliations

  1. Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
  2. German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.
  3. Institute for Biotechnology, Technische Universität, Berlin, Germany.
  4. Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy.
  5. Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
  6. Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
  7. Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.
  8. Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy.
  9. Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
  10. Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain.
  11. Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany.
  12. Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany.
  13. Division of Medical Sciences, National Cancer Centre Singapore, Singapore.
  14. Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
  15. Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  16. Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy.
  17. Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy.
  18. Institute of Immunology, Hannover Medical School, Hannover, Germany.
  19. Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany.
  20. Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
  21. Department of Surgery, The University of British Columbia, Vancouver, Canada.
  22. BC Children's Hospital Research Institute, Vancouver, Canada.
  23. Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia.
  24. Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
  25. Department of Microbiology & Immunology, Columbia University, New York City, USA.
  26. German Center for Infection Research (DZIF), Munich, Germany.
  27. Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
  28. Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.
  29. Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
  30. Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
  31. Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, UK.
  32. National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
  33. Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
  34. Department of Medicine, The University of British Columbia, Vancouver, Canada.
  35. Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
  36. Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
  37. IRCCS, Istituto Giannina Gaslini, Genova, Italy.
  38. Institute for Immunology, University Medical Center Mainz, Mainz, Germany.
  39. Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany.
  40. Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.
  41. Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
  42. Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.
  43. Inserm U1223, Paris, France.
  44. Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
  45. Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.
  46. Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany.
  47. Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany.
  48. Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  49. Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France.
  50. Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
  51. Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.
  52. Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany.
  53. Chair for Immunology, University Regensburg, Regensburg, Germany.
  54. Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France.
  55. Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France.
  56. AP-HP, Hôpital Necker Enfants Malades, Paris, France.
  57. Department of Medicine I, Lighthouse Core Facility, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  58. John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
  59. Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK.
  60. Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.
  61. Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  62. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  63. Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany.
  64. Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands.
  65. Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany.
  66. Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain.
  67. Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  68. Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
  69. Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
  70. Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.
  71. Berlin Institute of Health (BIH), Berlin, Germany.
  72. German Cancer Consortium (DKTK), partner site Berlin, Germany.
  73. Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
  74. Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
  75. Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
  76. Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.
  77. Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany.
  78. Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 - Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany.
  79. Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  80. Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
  81. Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
  82. Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany.
  83. Department of Hematology, Singapore General Hospital, Singapore, Singapore.
  84. Executive Offices, National Cancer Centre Singapore, Singapore.
  85. Vita-Salute San Raffaele University, Milan, Italy.
  86. Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
  87. Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany.
  88. Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  89. Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  90. Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany.
  91. Department of Neuropathology, Universitätsklinikum Erlangen, Germany.
  92. Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
  93. Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
  94. Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
  95. School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada.
  96. Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
  97. Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada.
  98. Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
  99. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  100. Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany.
  101. Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, -18, Leipzig, 04107, Germany.
  102. Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
  103. Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.
  104. Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.
  105. Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  106. Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
  107. School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  108. Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
  109. Peter Gorer Department of Immunobiology, King's College London, London, UK.
  110. School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia.
  111. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
  112. Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK.
  113. Immunology Frontier Research Center, Osaka University, Japan.
  114. Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.
  115. Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany.
  116. Charité Universitätsmedizin Berlin - BIH Center for Regenerative Therapies, Berlin, Germany.
  117. Sanquin Research - Adaptive Immunity, Amsterdam, The Netherlands.
  118. Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.
  119. Department of Precision Instrument, Tsinghua University, Beijing, China.
  120. Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
  121. Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany.
  122. Department of Medicine III, Technical University Dresden, Dresden, Germany.
  123. Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.

PMID: 34910301 DOI: 10.1002/eji.202170126

Abstract

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.

© 2021 Wiley-VCH GmbH.

References

  1. Maecker, H. T. and Trotter, J., Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 2006. 69: 1037-1042. - PubMed
  2. Hulspas, R., O'Gorman, M. R., Wood, B. L., Gratama, J. W. and Sutherland, D. R., Considerations for the control of background fluorescence in clinical flow cytometry. Cytom. B. Clin. Cytom. 2009. 76: 355-364. - PubMed
  3. Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. K. and Roederer, M., Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat. Protoc. 2012. 7: 2067-2079. - PubMed
  4. Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. and Roederer, M., Quality assurance for polychromatic flow cytometry. Nat. Protoc. 2006. 1: 1522-1530. - PubMed
  5. Nolan, J. P. and Condello, D., Spectral flow cytometry. Curr. Protoc. Cytom. 2013; Chapter 1:Unit1 27. - PubMed
  6. Roederer, M., Compensation in flow cytometry. Curr. Protoc. Cytom. 2002; Chapter 1:Unit 1 14. - PubMed
  7. Roederer, M., Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 2001. 45: 194-205. - PubMed
  8. Brinkman, R. R., Improving the rigor and reproducibility of flow cytometry-based clinical research and trials through automated data analysis. Cytometry A 2020. 97: 107-112. - PubMed
  9. Cheung, M., Campbell, J. J., Whitby, L., Thomas, R. J., Braybrook, J. and Petzing, J., Current trends in flow cytometry automated data analysis software. Cytometry A 2021. 99: 1007-1021. - PubMed
  10. Roca, C. P., Burton, O. T., Gergelits, V., Prezzemolo, T., Whyte, C. E., Halpert, R., Kreft, Ł. et al., AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat. Commun. 2021. 12: 2890. - PubMed
  11. O'Gorman, M. R. and Thomas, J., Isotype controls - time to let go? Cytometry 1999. 38: 78-80. - PubMed
  12. Roederer, M., Multiple stained samples are not appropriate compensation controls. Cytometry A 2011. 79: 591-593. - PubMed
  13. Begley, C. G. and Ellis, L. M., Drug development: Raise standards for preclinical cancer research. Nature 2012. 483: 531-533. - PubMed
  14. Bradbury, A. and Plückthun, A., Reproducibility: Standardize antibodies used in research. Nature 2015. 518: 27-29. - PubMed
  15. Begley, C. G. and Ioannidis, J. P., Reproducibility in science: improving the standard for basic and preclinical research. Circ. Res. 2015. 116: 116-126. - PubMed
  16. Freedman, L. P., Cockburn, I. M. and Simcoe, T. S., The economics of reproducibility in preclinical research. PLoS. Biol. 2015. 13: e1002165. - PubMed
  17. Fanelli, D., Opinion: is science really facing a reproducibility crisis, and do we need it to? Proc. Natl. Acad. Sci. U. S. A. 2018. 115: 2628-2631. - PubMed
  18. Baker, M., 1,500 scientists lift the lid on reproducibility. Nature 2016. 533: 452-454. - PubMed
  19. Maecker, H. T., McCoy J. P., Jr., Consortium, F. H. I., Amos, M., Elliott, J., Gaigalas, A., Wang, L. et al., A model for harmonizing flow cytometry in clinical trials. Nat. Immunol. 2010. 11: 975-978. - PubMed
  20. Kalina, T., Reproducibility of flow cytometry through standardization: Opportunities and challenges. Cytometry A 2020. 97: 137-147. - PubMed
  21. Cossarizza, A., Chang, H. D., Radbruch, A., Akdis, M., Andra, I., Annunziato, F., Bacher, P. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 2017. 47: 1584-1797. - PubMed
  22. Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457-1973. - PubMed
  23. Lopez, P. A. and Hulspas, R., Special Issue on enhancement of reproducibility and rigor. Cytometry A 2020. 97: 105-106. - PubMed
  24. Tarnok, A., Drawing the Bow for Reproducibility. Cytometry A 2020. 97: 103-104. - PubMed
  25. Dirnagl, U., Kurreck, C., Castanos-Velez, E. and Bernard, R., Quality management for academic laboratories: burden or boon? Professional quality management could be very beneficial for academic research but needs to overcome specific caveats. EMBO Rep. 2018. 19. - PubMed
  26. WHO. Quality practice in basic biomedical research. 2005. https://www.who.int/tdr/publications/training-guideline-publications/handbook-quality-practices-biomedical-research/en/. - PubMed
  27. Regulated-Research RWPoQiN. Guidelines for quality in non-regulated research. 2014. https://www.therqa.com/resources/publications/booklets/guidelines-for-quality-in-non-regulated-scientific-research-booklet/. - PubMed
  28. Bespalov, A., Bernard, R., Gilis, A., Gerlach, B., Guillen, J., Castagne, V., Lefevre, I. A. et al., Introduction to the EQIPD quality system. eLife 2021. 10: e63294. - PubMed
  29. Hewera, M., Nickel, A. C., Knipprath, N., Muhammad, S., Fan, X., Steiger, H. J., Hänggi, D. et al., An inexpensive and easy-to-implement approach to a quality management system for an academic research lab. F1000Res. 2020. 9: 660. - PubMed
  30. Bongiovanni, S., Purdue, R., Kornienko, O. and Bernard, R., Quality in Non-GxP research environment. Handb. Exp. Pharmacol. 2020. 257: 1-17. - PubMed
  31. Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J. et al., MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 2008. 73: 926-930. - PubMed
  32. Lucas, F., Gil-Pulido, J., LaMacchia, J., Preffer, F., Wallace, P. K. and Lopez, P., MiSet RFC Standards: defining a universal minimum set of standards required for reproducibility and rigor in research flow cytometry experiments. Cytometry A 2020. 97: 148-155. - PubMed
  33. Moher, D., Glasziou, P., Chalmers, I., Nasser, M., Bossuyt, P. M., Korevaar, D. A., Graham, I. D. et al., Increasing value and reducing waste in biomedical research: who's listening? Lancet 2015. Sep 25. pii: S0140-6736(15)00307-4 - PubMed
  34. Taylor, C. F., Field, D., Sansone, S. A., Aerts, J., Apweiler, R., Ashburner, M., Ball, C. A. et al., Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 2008. 26: 889-896. - PubMed
  35. Britten, C. M., Janetzki, S., Butterfield, L. H., Ferrari, G., Gouttefangeas, C., Huber, C., Kalos, M. et al., T cell assays and MIATA: the essential minimum for maximum impact. Immunity 2012. 37: 1-2. - PubMed
  36. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A. et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018. 7: 1535750. - PubMed
  37. Welsh, J. A., Van Der Pol, E., Arkesteijn, G. J. A., Bremer, M., Brisson, A., Coumans, F., Dignat-George, F. et al., MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles. 2020. 9: 1713526. - PubMed
  38. Sakurai, K., Kurtz, A., Stacey, G., Sheldon, M. and Fujibuchi, W., First Proposal of Minimum Information About a Cellular Assay for Regenerative Medicine. Stem. Cells Transl. Med. 2016. 5: 1345-1361. - PubMed
  39. Fuchs, A., Gliwiński, M., Grageda, N., Spiering, R., Abbas, A. K., Appel, S., Bacchetta, R. et al., Minimum information about T regulatory cells: a step toward reproducibility and standardization. Front. Immunol. 2018. 8: 1844. - PubMed
  40. Lord, P., Spiering, R., Aguillon, J. C., Anderson, A. E., Appel, S., Benitez-Ribas, D., Ten Brinke, A. et al., Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. Peer J. 2016. 4: e2300. - PubMed
  41. Galbraith, D., Loureiro, J., Antoniadi, I., Bainard, J., Bureš, P., Cápal, P., Castro, M. et al., Best practices in plant cytometry. Cytometry A 2021. 99: 311-317. - PubMed
  42. Nies, K. P. H., Kraaijvanger, R., Lindelauf, K. H. K., Drent, R. J. M. R., Rutten, R. M. J. and Ramaekers, F. C. S., Leers MPG. Determination of the proliferative fractions in differentiating hematopoietic cell lineages of normal bone marrow. Cytometry A 2018. 93: 1097-1105. - PubMed
  43. Parks, D. R., Moore, W. A., Brinkman, R. R., Chen, Y., Condello, D., El Khettabi, F., Nolan, J. P. et al., Methodology for evaluating and comparing flow cytometers: a multisite study of 23 instruments. Cytometry A 2018. 93: 1087-1091. - PubMed
  44. Dusoswa, S. A., Verhoeff, J. and Garcia-Vallejo, J. J., OMIP-054: Broad immune phenotyping of innate and adaptive leukocytes in the brain, spleen, and bone marrow of an orthotopic murine glioblastoma model by mass cytometry. Cytometry A 2019. 95: 422-426. http://doi.org/10.1002/cyto.a.23725. Epub 2019 Jan 31. - PubMed
  45. Park, L. M., Lannigan, J. and Jaimes, M C., OMIP-069: forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A 2020. 97: 1044-1051. - PubMed
  46. Leavesley, S. and Tárnok, A., Tycho Brahe's way to precision. Cytometry A 2018. 93: 977-979. - PubMed
  47. Mahnke, Y., Chattopadhyay, P. and Roederer, M., Publication of optimized multicolor immunofluorescence panels. Cytometry A 2010. 77: 814-818. - PubMed
  48. Spidlen, J., Breuer, K. and Brinkman, R., Preparing a minimum information about a flow cytometry experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org). Curr. Protoc. Cytom. 2012. Chapter 10:Unit 10.18. - PubMed
  49. Wang, W. and Creusot, R J., Orchestrating multiplexity in polychromatic science through OMIPs: a decade-old resource to empower biomedical research. Cytometry A 2021 Jun 19. https://doi.org/10.1002/cyto.a.24471. Epub ahead of print. - PubMed
  50. Bocsi, J., Melzer, S., Dähnert, I. and Tárnok, A., OMIP-023: 10-color, 13 antibody panel for in-depth phenotyping of human peripheral blood leukocytes. Cytometry A 2014. 85: 781-784. - PubMed
  51. Cascino, K., Roederer, M. and Liechti, T., OMIP-068: high-dimensional characterization of global and antigen-specific B cells in chronic infection. Cytometry A 2020. 97: 1037-1043. - PubMed
  52. Melzer, S., Zachariae, S., Bocsi, J., Engel, C., Löffler, M., and Tárnok, A., Reference intervals for leukocyte subsets in adults: results from a population-based study using 10-color flow cytometry. Cytom. B Clin. Cytom. 2015. 88: 270-281. - PubMed
  53. Cram, L. S., Dobrucki, J. W., Holden, E., Jacobberger, J. W., Robinson, J. P., Smith, P. J., Staiano-Coico, L. et al., In memoriam professor Zbigniew Darzynkiewicz - Cytometry pathfinder 1936-2021. Cytometry A 2021. 99: 550-556. - PubMed
  54. Roederer, M., Darzynkiewicz, Z. and Parks, D. R., Guidelines for the presentation of flow cytometric data. Meth. Cell. Biol. 2004. 75: 241-256. - PubMed
  55. DR, Parks, Roederer, M. and Moore, W. A., A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 2006. 69: 541-551. - PubMed
  56. Blenman, K. R. M., Spidlen, J., Parks, D. R., Moore, W., Treister, A., Leif, R., Bray, C. et al., ISAC data standards task force, Brinkman R. ISAC Probe tag dictionary: standardized nomenclature for detection and visualization labels used in cytometry and microscopy imaging. Cytometry A 2021. 99: 103-106. - PubMed
  57. Pierzchalski, A., Robitzki, A., Mittag, A., Emmrich, F., Sack, U., O'Connor, J. E., Bocsi, J. et al., Cytomics and nanobioengineering. Cytom. B. Clin. Cytom. 2008. 74: 416-426. - PubMed
  58. Loeffler, M., Engel, C., Ahnert, P., Alfermann, D., Arelin, K., Baber, R., Beutner, F. et al., The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Publ. Heal. 2015. 15: 691. - PubMed
  59. Wong, B., Color coding. Nat. meth. 2010 : 573. - PubMed
  60. Crameri, F., Shephard, G. E. and Heron, P J., The misuse of colour in science communication. Nat. Commun. 2020. 11: 5444. - PubMed
  61. Mair, F. and Prlic, M., OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytometry A 2018. 93: 402-405. Erratum in: Cytometry A. 2019 Aug;95(8):925-926. - PubMed
  62. Finak, G., Jiang, W. and Gottardo, R., CytoML for cross-platform cytometry data sharing. Cytometry A 2018. 93: 1189-1196 - PubMed
  63. O'Neill, K. and Brinkman, R. R., Publishing code is essential for reproducible flow cytometry bioinformatics. Cytometry A 2016. 89: 10-11. - PubMed
  64. Mair, F., Hartmann, F. J., Mrdjen, D., Tosevski, V. and Krieg, C., Becher, B., The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol. 2016. 46: 34-43. - PubMed
  65. Aghaeepour, N., Finak, G., FlowCAP Consortium; DREAM Consortium, Hoos, H., Mosmann, T. R., Brinkman, R., Gottardo, R. and Scheuermann, R. H., Critical assessment of automated flow cytometry data analysis techniques. Nat. Meth. 2013. 10: 228-238. - PubMed
  66. Mazza, E. M. C., Brummelman, J., Alvisi, G., Roberto, A., De Paoli, F., Zanon, V., Colombo, F. et al., Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding. Cytometry A 2018. 93: 785-792. - PubMed
  67. Qiu, P., Simonds, E. F., Bendall, S. C., Gibbs, K. D. Jr, Bruggner, R. V., Linderman, M. D., Sachs, K. et al., Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 2011. 29: 886-891. - PubMed
  68. Diggins, K. E., Ferrell, P. B. Jr and Irish, J M., Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 2015. 82: 55-63. - PubMed
  69. Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T. and Saeys, Y., FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015. 87: 636-645. - PubMed
  70. Elhmouzi-Younes, J., Palgen, J. L., Tchitchek, N., Delandre, S., Namet, I., Bodinham, C. L., Pizzoferro, K. et al., Beignon AS. in depth comparative phenotyping of blood innate myeloid leukocytes from healthy humans and macaques using mass cytometry. Cytometry A 2017. 91: 969-982. - PubMed
  71. Maciorowski, Z., Chattopadhyay, P. K. and Jain, P., Basic Multicolor Flow Cytometry. Curr. Protoc. Immunol. 2017. 117: 5.4.1-5.4.38. - PubMed
  72. Mair, F. and Tyznik, A J., High-Dimensional Immunophenotyping with Fluorescence-Based Cytometry: a Practical Guidebook. Meth. Mol. Biol. 2019. 2032: 1-29. - PubMed
  73. Futamura, K., Sekino, M., Hata, A., Ikebuchi, R., Nakanishi, Y., Egawa, G., Kabashima, K. et al., Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry 2015. 87: 830-842. - PubMed
  74. Bagwell, C. B. and Adams, E. G., Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. N. Y. Acad. Sci. 1993. 677: 167-184. - PubMed
  75. Roederer, M., Compensation is not dependent on signal intensity or on number of parameters. Cytometry 2001. 46: 357-359. - PubMed
  76. Nguyen, R., Perfetto, S., Mahnke, Y. D., Chattopadhyay, P. and Roederer, M., Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytometry A 2013. 83: 306-315 - PubMed
  77. Roederer, M. and Tárnok, A., OMIPs-Orchestrating multiplexity in polychromatic science. Cytometry A 2010. 77: 811-812. - PubMed
  78. Perfetto, S. P., Chattopadhyay, P. K. and Roederer, M., Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 2004. 4: 648-655. - PubMed
  79. Saeys, Y., Gassen, S. V. and Lambrecht, B. N., Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 2016. 16: 449-462. - PubMed
  80. Chester, C. and Maecker, H. T., Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 2015. 195: 773-779. - PubMed
  81. Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. and Lugli, E., The who's who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 2013. 43: 2797-2809. - PubMed
  82. Herzenberg, L. A., Tung, J., Moore, W. A., Herzenberg, L. A. and Parks, D. R., Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 2006. 7: 681-685. - PubMed
  83. Finak, G., Perez, J. M., Weng, A. and Gottardo, R., Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinform. 2010. 11: 546. - PubMed
  84. Gerner, M. Y., Kastenmüller, W., Ifrim, I., Kabat, J. and Germain, R. N., Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 2012. 37: 364-376. - PubMed
  85. Giesen, C., Wang, H. A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schuffler, P. J. et al., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014. 11: 417-422. - PubMed
  86. Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale, M., Vazquez, G., Black, S. et al., (2018). Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174: 968-981.e15. - PubMed
  87. Ashhurst, T. M., Smith, A. L. and King, N. J. C., High-dimensional fluorescence cytometry. John Wiley & Sons, Inc, Hoboken, NJ 2017. 5.8.1-5.8.38. - PubMed
  88. Leslie, D. S., Johnston, W. W., Daly, L., Ring, D. B., Shpall, E. J., Peters, W. P. and Bast, R. C., Jr., Detection of breast carcinoma cells in human bone marrow using fluorescence-activated cell sorting and conventional cytology. Am. J. Clin. Pathol. 1990. 94: 8-13. - PubMed
  89. Frantz, C. N., Ryan, D. H., Cheung, N. V., Duerst, R. E. and Wilbur, D. C., Sensitive detection of rare metastatic human neuroblastoma cells in bone marrow by two-color immunofluorescence and cell sorting. Prog. Clin. Biol. Res. 1988. 271: 249-262. - PubMed
  90. Ryan, D. H., Mitchell, S. J., Hennessy, L. A., Bauer, K. D., Horan, P. K. and Cohen, H. J., Improved detection of rare CALLA-positive cells in peripheral blood using multiparameter flow cytometry. J. Immunol. Meth. 1984. 74: 115-128. - PubMed
  91. Visser, J. W. and De Vries, P., Identification and purification of murine hematopoietic stem cells by flow cytometry. Meth. Cell. Biol. 1990. 33: 451-468. - PubMed
  92. Cory, J. M., Ohlsson-Wilhelm, B. M., Brock, E. J., Sheaffer, N. A., Steck, M. E., Eyster, M. E. and Rapp, F., Detection of human immunodeficiency virus-infected lymphoid cells at low frequency by flow cytometry. J. Immunol. Meth. 1987. 105: 71-78. - PubMed
  93. Eberl, G., Colonna, M., Di Santo, J. P. and McKenzie, A. N. J., Innate lymphoid cells: a new paradigm in immunology. Science 2015. 348: 6237 aaa6566. - PubMed
  94. Jensen, R. A. L. J. F., Flow Cytometry and Sorting, 2nd Edn, New York: 1990. - PubMed
  95. Cossarizza, A. and Cousins, D., Overocoming challenges in cellular analysis: multiparameter analysis of rare cells. Science 2015. 347: 443. - PubMed
  96. Gross, H. J., Verwer, B., Houck, D., Hoffman, R. A. and Recktenwald, D., Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). Proc. Natl. Acad. Sci. U. S. A. 1995. 92: 537-541. - PubMed
  97. Donnenberg, A. D. and Donnenberg, V. S., Rare-event analysis in flow cytometry. Clin. Lab. Med. 2007. 27: 627-652. - PubMed
  98. De Biasi, S., Bianchini, E., Nasi, M., Digaetano, M., Gibellini, L., Carnevale, G., Borghi, V. et al., Th1 and Th17 pro-inflammatory profile characterizes iNKT cells in virologically suppressed HIV+ patients with low CD4/CD8 ratio. AIDS 2016. Epub ahead of print - PubMed
  99. Duda, D. G., Cohen, K. S., Scadden, D. T. and Jain, R. K., A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat. Protoc. 2007. 2: 805-810. - PubMed
  100. Mancuso, P., Antoniotti, P., Quarna, J., Calleri, A., Rabascio, C., Tacchetti, C. and Braidotti, P., Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin. Cancer. Res. 2009. 15: 267-273. - PubMed
  101. Van Craenenbroeck, E. M., Conraads, V. M., Van Bockstaele, D. R., Haine, S. E., Vermeulen, K., Van Tendeloo, V. F. and Vrints, C. J., Quantification of circulating endothelial progenitor cells: a methodological comparison of six flow cytometric approaches. J. Immunol. Meth. 2008. 332: 31-40. - PubMed
  102. Estes, M. L., Mund, J. A., Ingram, D. A. and Case, J., Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr. Protoc. Cytom. 2010. Chapter 9: Unit 9 33 31-11. - PubMed
  103. De Biasi, S., Cerri, S., Bianchini, E., Gibellini, L., Persiani, E., Montanari, G. and Luppi, F., Levels of circulating endothelial cells are low in idiopathic pulmonary fibrosis and are further reduced by anti-fibrotic treatments. BMC Med. 2015. 13: 277. - PubMed
  104. Cox, C., Reeder, J. E., Robinson, R. D., Suppes, S. B. and Wheeless, L. L, Comparison of frequency distribution in flow cytometry. Cytometry 1988. 9: 291-298. - PubMed
  105. Haight, F. A., Handbook of the Poisson distribution. 1967. New York: John Wiley and Sons. - PubMed
  106. Roederer, M., How many events is enough? Are you positive? Cytometry 2008. 73A: 384-385 - PubMed
  107. Van Gassen, S., Gaudilliere, B., Angst, M. S., Saeys, Y. and Aghaeepour, N., CytoNorm: aNormalization Algorithm for Cytometry Data. Cytometry A 2020. 97: 268-278 - PubMed
  108. Trussart, M., The, C. E., Tan, T., Leong, L., Gray, D. and Speed, T. P., Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets. eLife 2020. 9: e59630 - PubMed
  109. Ogishi, M., Yang, R., Gruber, C., Zhang, P., Pelham, S. J., Spaan, A. N., Rosain, J. et al., Multibatch Cytometry Data Integration for Optimal Immunophenotyping. J. Immunol. 2021. 206: 206-213. - PubMed
  110. Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R. and Rawlings, S. A., Targets of T cell responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 disease and unexposed individuals. Cell 2020. 181: 1489-1501.e15. - PubMed
  111. Lipsitch, M., Grad, Y. H., Sette, A. and Crotty, S., Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol. 2020. 20: 709-713. - PubMed
  112. Lineburg, et al., Immunity 2021. 54: 1055-1065 May 11, 2021. - PubMed
  113. Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., Strålin, K., Gorin, J. B., Olsson, A. and Llewellyn-Lacey, S., Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020. 183: 158-168.e14. - PubMed
  114. Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F. and Hippenstiel, S., SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020. 587: 270-274. - PubMed
  115. Nelde, A., Bilich, T., Heitmann, J. S., Maringer, Y., Salih, H. R., Roerden, M. and Lübke, M., SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 2021. 22: 74-85. - PubMed
  116. Mateus, J., Grifoni, A., Tarke, A., Sidney, J., Ramirez, S. I., Dan, J. M. and Burger, Z. C., Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020. 370: 89-94. - PubMed
  117. Cossarizza, A., Gibellini, L., De Biasi, S., Lo Tartaro, D., Mattioli, M., Paolini, A. and Fidanza, L., Handling and processing of blood specimens from patients with COVID-19 for Safe Studies on cell phenotype and cytokine Storm. Cytometry A 2020. 97: 668-673. - PubMed
  118. Thieme, C. J., Anft, M., Paniskaki, K., Blazquez-Navarro, A., Doevelaar, A., Seibert, F. S. and Hoelzer, B., Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 Proteins ss not associated with recovery in critical COVID-19 Patients. Cell Rep. Med. 2020. 1: 100092. - PubMed
  119. Weiskopf, D., Schmitz, K. S., Raadsen, M. P., Grifoni, A., Okba, N. M. A., Endeman, H. and van den Akker, J. P. C., Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 2020. 5: eabd2071. - PubMed
  120. Peng, Y., Mentzer, A. J., Liu, G., Yao, X., Yin, Z., Dong, D. and Dejnirattisai, W., Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020. 21: 1336-1345. - PubMed
  121. Tarke, A., Sidney, J., Kidd, C. K., Dan, J. M., Ramirez, S. I., Yu, E. D. and Mateus, J., Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell. Rep. Med. 2021. 2: 100204. - PubMed
  122. Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A. and Chng, M. H. Y., SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020. 584: 457-462. - PubMed
  123. Gangaev, A., Ketelaars, S. L. C., Isaeva, O. I., Patiwael, S., Dopler, A., Hoefakker, K. and De Biasi, S., Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features. Nat. Commun. 2021. 12: 2593. - PubMed
  124. Zuo, J., Dowell, A. C., Pearce, H., Verma, K., Long, H. M., Begum, J. and Aiano, F., Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat. Immunol. 2021. 22: 620-626. - PubMed
  125. Le Bert, N., Clapham, H. E., Tan, A. T., Chia, W. N., Tham, C. Y. L., Lim, J. M. and Kunasegaran, K., Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 2021. 218: e20202617. - PubMed
  126. De Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., Gozzi, L. et al., Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020. 11: 3434. - PubMed
  127. Sattler, A., Angermair, S., Stockmann, H., Heim, K. M., Khadzhynov, D., Treskatsch, S. and Halleck, F., SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Invest. 2020. 130: 6477-6489. - PubMed
  128. Rydyznski Moderbacher, C., Ramirez, S. I., Dan, J. M., Grifoni, A., Hastie, K. M., Weiskopf, D. and Belanger, S., Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease Severity. Cell 2020. 183: 996-1012.e19. - PubMed
  129. Neidleman, J., Luo, X., Frouard, J., Xie, G., Gill, G., Stein, E. S., McGregor, M. et al., SARS-CoV-2-Specific T cells exhibit phenotypic features of helper function, lack of terminal differentiation, and high proliferation potential. Cell. Rep. Med. 2020. 1: 100081. - PubMed
  130. Reiss, S., Baxter, A. E., Cirelli, K. M., Dan, J. M., Morou, A., Daigneault, A., Brassard, N. et al., Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS One 2017. 12: e0186998. - PubMed
  131. Sallusto, F., Heterogeneity of human CD4(+) T cells against microbes. Annu. Rev. Immunol. 2016. 34: 317-334. - PubMed
  132. Ahmed, R. and Gray, D., Immunological memory and protective immunity: understanding their relation. Science 1996. 272: 54-60. - PubMed
  133. Dutton, R. W., Bradley, L. M. and Swain, S L., T cell memory. Annu. Rev. Immunol. 1998. 16: 201-223. - PubMed
  134. Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006. 203: 1701-1711. - PubMed
  135. Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708-712. - PubMed
  136. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. and Jenkins, M K., Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001. 410: 101-105. - PubMed
  137. Butcher, E. C. and Picker, L. J., Lymphocyte homing and homeostasis. Science 1996. 272: 60-66. - PubMed
  138. Costantini, A., Mancini, S., Giuliodoro, S., Butini, L., Regnery, C. M., Silvestri, G., Montroni, M. et al., Effects of cryopreservation on lymphocyte immunophenotype and function. J. Immunol. Methods 2003. 278: 145-155. - PubMed
  139. Harari, A., Vallelian, F. and Pantaleo, G., Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. Eur. J. Immunol. 2004. 34: 3525-3533. - PubMed
  140. Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C. M., Quigley, M. F., Almeida, J. R. et al., A human memory T cell subset with stem cell-like properties. Nat. Med. 2011. 17: 1290-1297. - PubMed
  141. Brodie, T., Brenna, E. and Sallusto, F., OMIP-018: chemokine receptor expression on human T helper cells. Cytometry A 2013. 83: 530-532. - PubMed
  142. Crotty, S., T follicular helper cell differentiation, function, and roles in disease. Immunity 2014. 41: 529-542. - PubMed
  143. Vella, L. A., Buggert, M., Manne, S., Herati, R. S., Sayin, I., Kuri-Cervantes, L., Brody, I. B. et al., T follicular helper cells in human efferent lymph retain lymphoid characteristics. J. Clin. Invest. 2019. 129: 3185-3200. - PubMed
  144. Loetscher, P., Uguccioni, M., Bordoli, L., Baggiolini, M., Moser, B., Chizzolini, C., Dayer, J. M. et al., CCR5 is characteristic of Th1 lymphocytes. Nature 1998. 391: 344-345. - PubMed
  145. Qin, S., Rottman, J. B., Myers, P., Kassam, N., Weinblatt, M., Loetscher, M., Koch, A. E. et al., The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 1998. 101: 746-754. - PubMed
  146. Sallusto, F., Geginat, J. and Lanzavecchia, A., Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 2004. 22: 745-763. - PubMed
  147. Sallusto, F., Mackay, C. R. and Lanzavecchia, A., Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997. 277: 2005-2007. - PubMed
  148. Zingoni, A., Soto, H., Hedrick, J. A., Stoppacciaro, A., Storlazzi, C. T., Sinigaglia, F., D'Ambrosio, D. et al., The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. J. Immunol. 1998. 161: 547-551. - PubMed
  149. Cosmi, L., Annunziato, F., Galli, M. I. G., Maggi, R. M. E., Nagata, K. and Romagnani, S., CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol. 2000. 30: 2972-2979. - PubMed
  150. De Simone, M., Arrigoni, A., Rossetti, G., Gruarin, P., Ranzani, V., Politano, C., Bonnal, R. J. P. et al., Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 2016. 45: 1135-1147. - PubMed
  151. Plitas, G., Konopacki, C., Wu, K., Bos, P. D., Morrow, M., Putintseva, E. V., Chudakov, D. M. et al., Regulatory T Cells exhibit distinct features in human breast cancer. Immunity 2016. 45: 1122-1134. - PubMed
  152. Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E. et al., Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007. 204: 1849-1861. - PubMed
  153. Hirota, K., Yoshitomi, H., Hashimoto, M., Maeda, S., Teradaira, S., Sugimoto, N., Yamaguchi, T. et al., Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 2007. 204: 2803-2812. - PubMed
  154. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A., and Sallusto, F., Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009. 10: 857-863. - PubMed
  155. Kleinschek, M. A., Boniface, K., Sadekova, S., Grein, J., Murphy, E. E., Turner, S. P., Raskin, L. et al., Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 2009. 206: 525-534. - PubMed
  156. Maggi, L., Santarlasci, V., Capone, M., Peired, A., Frosali, F., Crome, S. Q., Querci, V. et al., CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol. 2010. 40: 2174-2181. - PubMed
  157. Okada, S., Markle, J. G., Deenick, E. K., Mele, F., Averbuch, D., Lagos, M., Alzahrani, M. et al., IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 2015. 349: 606-613. - PubMed
  158. Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F. et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007. 8: 639-646. - PubMed
  159. Cohen, C. J., Crome, S. Q., MacDonald, K. G., Dai, E. L., Mager, D. L. and Levings, M. K., Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J. Immunol. 2011. 187: 5615-5626. - PubMed
  160. Nistala, K., Adams, S., Cambrook, H., Ursu, S., Olivito, B., de Jager, W., Evans, J. G. et al., Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc. Natl. Acad. Sci. U. S. A. 2010. 107: 14751-14756. - PubMed
  161. Morita, R., Schmitt, N., Bentebibel, S. E., Ranganathan, R., Bourdery, L., Zurawski, G., Foucat, E. et al., Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011. 34: 108-121. - PubMed
  162. Nylander, S. and Kalies, I., Brefeldin A, but not monensin, completely blocks CD69 expression on mouse lymphocytes: efficacy of inhibitors of protein secretion in protocols for intracellular cytokine staining by flow cytometry. J. Immunol. Methods 1999. 224: 69-76. - PubMed
  163. Rivino, L., Gruarin, P., Haringer, B., Steinfelder, S., Lozza, L., Steckel, B., Weick, A. et al., CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function. J. Exp. Med. 2010. 207: 565-577. - PubMed
  164. Facciotti, F., Larghi, P., Bosotti, R., Vasco, C., Gagliani, N., Cordiglieri, C., Mazzara, S. et al., Evidence for a pathogenic role of extrafollicular, IL-10-producing CCR6(+)B helper T cells in systemic lupus erythematosus. Proc. Natl. Acad. Sci. U. S. A. 2020. 117: 7305-7316. - PubMed
  165. Haringer, B., Lozza, L., Steckel, B. and Geginat, J., Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. J. Exp. Med. 2009. 206: 1009-1017. - PubMed
  166. Facciotti, F., Gagliani, N., Haringer, B., Alfen, J. S., Penatti, A., Maglie, S., Paroni, M. et al., IL-10-producing forkhead box protein 3-negative regulatory T cells inhibit B-cell responses and are involved in systemic lupus erythematosus. J. Allergy Clin. Immunol. 2016. 137: 318-321 e5. - PubMed
  167. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. and Glimcher, L H., T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 2005. 307: 430-433. - PubMed
  168. Zhu, J., Jankovic, D., Oler, A. J., Wei, G., Sharma, S., Hu, G., Guo, L. et al., The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 2012. 37: 660-673. - PubMed
  169. Gruarin, P., Maglie, S., De Simone, M., Haringer, B., Vasco, C., Ranzani, V., Bosotti, R. et al., Eomesodermin controls a unique differentiation program in human IL-10 and IFN-gamma coproducing regulatory T cells. Eur. J. Immunol. 2019. 49: 96-111. - PubMed
  170. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. and Spits, H., Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 2009. 10: 864-871. - PubMed
  171. Choi, J. and Crotty, S., Bcl6-Mediated Transcriptional Regulation of Follicular Helper T cells (TFH). Trends Immunol. 2021. 42: 336-349. - PubMed
  172. Hatzi, K., Nance, J. P., Kroenke, M. A., Bothwell, M., Haddad, E. K., Melnick, A. and Crotty, S., BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J. Exp. Med. 2015. 212: 539-553. - PubMed
  173. Himmel, M. E., MacDonald, K. G., Garcia, R. V., Steiner, T. S. and Levings, M. K., Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J. Immunol. 2013. 190: 2001-2008. - PubMed
  174. Lamoreaux, L., Roederer, M. and Koup, R., Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 2006. 1: 1507-1516. - PubMed
  175. Cassotta, A., Goldstein, J. D., Durini, G., Jarrossay, D., Baggi Menozzi, F., Venditti, M., Russo, A. et al., Broadly reactive human CD4(+) T cells against Enterobacteriaceae are found in the naive repertoire and are clonally expanded in the memory repertoire. Eur. J. Immunol. 2021. 51: 648-661. - PubMed
  176. Paroni, M., Maltese, V., De Simone, M., Ranzani, V., Larghi, P., Fenoglio, C., Pietroboni, A. M. et al., Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. J. Allergy Clin. Immunol. 2017. 140: 797-808. - PubMed
  177. Zhou, L., Chong, M. M. and Littman, D. R., Plasticity of CD4+ T cell lineage differentiation. Immunity 2009.30: 646-655. - PubMed
  178. Saravia, J., Chapman, N. M. and Chi, H., Helper T cell differentiation. Cell. Mol. Immunol. 2019.16: 634-643. - PubMed
  179. Zhu, J., Yamane, H. and Paul, W. E., Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 2010.28: 445-489. - PubMed
  180. Luckheeram, R. V., Zhou, R., Verma, A. D. and Xia, B., CD4(+)T cells: differentiation and functions. Clin. Dev. Immunol. 2012. 2012: 925135. - PubMed
  181. Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L., et al, Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744-748. - PubMed
  182. Murphy, C. A., Langrish, C. L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R. A., Sedgwick, J. D. et al., Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 2003. 198: 1951-1957. - PubMed
  183. Iwakura, Y., Ishigame, H., Saijo, S. and Nakae, S., Functional specialization of interleukin-17 family members. Immunity 2011. 34: 149-162. - PubMed
  184. Brown, D. M., Dilzer, A. M., Meents, D. L. and Swain, S. L., CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 2006. 177: 2888-2898. - PubMed
  185. Lord, G. M., Rao, R. M., Choe, H., Sullivan, B. M., Lichtman, A. H., Luscinskas, F. W. and Glimcher, L. H., T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 2005. 106: 3432-3439. - PubMed
  186. Sundrud, M. S., Grill, S. M., Ni, D., Nagata, K., Alkan, S. S., Subramaniam, A. and Unutmaz, D., Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol. 2003. 171: 3542-3549. - PubMed
  187. Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M. and Forster, R., Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 2000. 192: 1545-1552. - PubMed
  188. Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O'Garra, A. and Murphy, K. M., Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993. 260: 547-549. - PubMed
  189. Lighvani, A. A., Frucht, D. M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B. D., Nguyen, B. V. et al., T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U. S. A. 2001. 98: 15137-15142. - PubMed
  190. Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G. and Glimcher, L. H., A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000. 100: 655-669. - PubMed
  191. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. and Paul, W. E., Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 1990. 172: 921-929. - PubMed
  192. Swain, S. L., Weinberg, A. D., English, M. and Huston, G., IL-4 directs the development of Th2-like helper effectors. J. Immunol. 1990. 145: 3796-3806. - PubMed
  193. Zheng, W. and Flavell, R. A., The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997. 89: 587-596. - PubMed
  194. Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 1121-1133. - PubMed
  195. Baba, N., Rubio, M., Kenins, L., Regairaz, C., Woisetschlager, M., Carballido, J. M. and Sarfati, M., The aryl hydrocarbon receptor (AhR) ligand VAF347 selectively acts on monocytes and naive CD4(+) Th cells to promote the development of IL-22-secreting Th cells. Hum. Immunol. 2012. 73: 795-800. - PubMed
  196. Gerlach, K., Hwang, Y., Nikolaev, A., Atreya, R., Dornhoff, H., Steiner, S., Lehr, H. A. et al.,TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 2014. 15: 676-686. - PubMed
  197. Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S. and Mackay, C. R., T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 2004. 173: 68-78. - PubMed
  198. Frentsch, M., Arbach, O., Kirchhoff, D., Moewes, B., Worm, M., Rothe, M., Scheffold, A. and Thiel, A., Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med. 2005. 11: 1118-1124. - PubMed
  199. Grewal, I. S., Xu, J. and Flavell, R. A., Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995. 378: 617-620. - PubMed
  200. Garside, P., Ingulli, E., Merica, R. R., Johnson, J. G., Noelle, R. J. and Jenkins, M. K., Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998. 281: 96-99. - PubMed
  201. Kirchhoff, D., Frentsch, M., Leclerk, P., Bumann, D., Rausch, S., Hartmann, S., Thiel, A. et al., Identification and isolation of murine antigen-reactive T cells according to CD154 expression. Eur. J. Immunol. 2007. 37: 2370-2377. - PubMed
  202. Kaech, S. M., Wherry, E. J. and Ahmed, R., Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2002. 2: 251-262. - PubMed
  203. Jameson, C. S. and Masopust, D., Understanding Subset Diversity in T Cell Memory. Immunity 2018. 48: 214-226. - PubMed
  204. Reina-Campos, M., Scharping, N. E. and Goldrath, A. W., CD8+ T cell metabolism in infection and cancer. Nat. Rev. Immunol. 2021. - PubMed
  205. Busch, D. H., Fräßle, S. P., Sommermeyer, D., Buchholz, V. R. and Riddell, S. R., Role of memory T cell subsets for adoptive immunotherapy. Semin. Immunol. 2016. 28: 28-34. - PubMed
  206. Lugli, E., Gattinoni, L., Roberto, A., Mavilio, D., Price, D. A., Restifo, N. P. and Roederer, M., Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 2013. 8: 33-42. - PubMed
  207. De Simone, G., Mazza, E. M. C., Cassotta, A., Davydov, A. N., Kuka, M., Zanon, V., De Paoli, F. et al., CXCR3 Identifies Human Naive CD8(+) T Cells with Enhanced Effector Differentiation Potential. J. Immunol. 2019. 203: 3179-3189. - PubMed
  208. Galletti, G., De Simone, G., Mazza, E. M. C., Puccio, S., Mezzanotte, C., Bi, T. M., Davydov, A. N. et al., Two subsets of stem-like CD8(+) memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 2020. 21: 1552-1562. - PubMed
  209. Buggert, M., Tauriainen, J., Yamamoto, T., Frederiksen, J., Ivarsson, M. A., Michaëlsson, J., Lund, O. et al., T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T Cells in HIV infection. PLoS. Pathog. 2014. 10: e1004251. - PubMed
  210. Champagne, P., Ogg, G. S., King, A. S., Knabenhans, C., Ellefsen, K., Nobile, M., Appay, V. et al., Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 2001. 410: 106-111. - PubMed
  211. Janbazian, L., Price, D. A., Canderan, G., Filali-Mouhim, A., Asher, T. E., Ambrozak, D. R., Scheinberg, P. et al., Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation. J. Immunol. 2012. 188: 1156-1167. - PubMed
  212. Ndhlovu, Z. M., Kazer, S. W., Nkosi, T., Ogunshola, F., Muema, D. M., Anmole, G., Swann, S. A. et al., Augmentation of HIV-specific T cell function by immediate treatment of hyperacute HIV-1 infection. Sci. Transl. Med. 2019. 11: eaau0528. - PubMed
  213. Gerlach, C., Moseman, E. A., Loughhead, S. M., Alvarez, D., Zwijnenburg, A. J., Waanders, L., Garg, R. et al., The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced CD8 T Cell Subsets with Distinct Roles in Immune Surveillance and Homeostasis. Immunity 2016. 45: 1270-1284. - PubMed
  214. Nishimura, M., Umehara, H., Nakayama, T., Yoneda, O., Hieshima, K., Kakizaki, M., Dohmae, N. et al., Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immonol. 2002. 168: 6173-6180. - PubMed
  215. Lugli, E., Galletti, G., Boi, S. K. and Youngblood, B. A., Stem, Effector, and Hybrid States of Memory CD8(+) T Cells. Trends. Immunol. 2020. 41: 17-28. - PubMed
  216. Blank, C. U., Haining, W. N., Held, W., Hogan, P. G., Kallies, A., Lugli, E., Lynn, R. C. et al., Defining 'T cell exhaustion'. Nat. Rev. Immunol. 2019. 19: 665-674. - PubMed
  217. Brummelman, J., Mazza, E. M. C., Alvisi, G., Colombo, F. S., Grilli, A., Mikulak, J., Mavilio, D. et al., High-dimensional single cell analysis identifies stem-like cytotoxic CD8(+) T cells infiltrating human tumors. J. Exp. Med. 2018. 215: 2520-2535. - PubMed
  218. Im, S. J., Hashimoto, M., Gerner, M. Y., Lee, J., Kissick, H. T., Burger, M. C., Shan, Q. et al., Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 2016. 537: 417-421. - PubMed
  219. Leong, Y. A., Chen, Y., Ong, H. S., Wu, D., Man, K., Deleage, C., Minnich, M. et al., CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 2016. 17: 1187-1196. - PubMed
  220. Utzschneider, D. T., Charmoy, M., Chennupati, V., Pousse, L., Ferreira, D. P., Calderon-Copete, S., Danilo, M. et al., T Cell Factor 1-Expressing Memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity 2016. 45: 415-427. - PubMed
  221. Brummelman, J., Haftmann, C., Nunez, N. G., Alvisi, G., Mazza, E. M. C., Becher, B. and Lugli, E., Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 2019. 14: 1946-1969. - PubMed
  222. van Beek, J. J. P., Puccio, S., Roberto, A., De Paoli, F., Graziano, G., Salviato, E., Alvisi, G. et al., Single-cell profiling reveals the dynamics of cytomegalovirus-specific T-cells in haploidentical hematopoietic stem cell transplantation. Haematologica 2021. 106: 2768-2773. - PubMed
  223. Shore, D. A., Issafras, H., Landais, E., Teyton, L. and Wilson, I. A., The crystal structure of CD8 in complex with YTS156.7.7 Fab and interaction with other CD8 antibodies define the binding mode of CD8 alphabeta to MHC class I. J. Mol. Biol. 2008. 384: 1190-1202. - PubMed
  224. Kaech, S. M., Tan, J. T., Wherry, E. J., Konieczny, B. T., Surh, C. D. and Ahmed, R., Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 2003. 4: 1191-1198. - PubMed
  225. Joshi, N. S., Cui, W., Chandele, A., Lee, H. K., Urso, D. R., Hagman, J., Gapin, L. et al., Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity 2007. 27: 281-295. - PubMed
  226. Chung, H. K., McDonald, B. and Kaech, S. M., The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates. J. Exp. Med. 2021. 218. - PubMed
  227. Tsukumo, S.-I., Unno, M., Muto, A., Takeuchi, A., Kometani, K., Kurosaki, T., Igarashi, K. et al., Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc. Natl. Acad. Sci. U.S.A. 2013. 110: 10735-10740. - PubMed
  228. Kaech, S. M. and Cui, W., Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012. 12: 749-761. - PubMed
  229. Sosinowski, T., White, J. T., Cross, E. W., Haluszczak, C., Marrack, P., Gapin, L. and Kedl, R. M., CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J. Immunol. 2013. 190: 1936-1947. - PubMed
  230. Mackay, L. K., Minnich, M., Kragten, N. A., Liao, Y., Nota, B., Seillet, C., Zaid, A. et al., Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016. 352): 459-463. - PubMed
  231. Mittrucker, H. W., Visekruna, A. and Huber, M., Heterogeneity in the differentiation and function of CD8(+) T cells. Arch. Immunol. Ther. Exp. (Warsz) 2014. 62: 449-458. - PubMed
  232. Frentsch, M., Stark, R., Matzmohr, N., Meier, S., Durlanik, S., Schulz, A. R., Stervbo, U. et al., CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 2013. 122: 405-412. - PubMed
  233. van Stipdonk, M. J., Hardenberg, G., Bijker, M. S., Lemmens, E. E., Droin, N. M., Green, D. R. and Schoenberger, S. P., Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 2003. 4: 361-365. - PubMed
  234. Liu, F. and Whitton, J. L., Cutting edge: re-evaluating the in vivo cytokine responses of CD8+ T cells during primary and secondary viral infections. J. Immonol. 2005. 174: 5936-5940. - PubMed
  235. Masopust, D., Murali-Krishna, K. and Ahmed, R., Quantitating the magnitude of the lymphocytic choriomeningitis virus-specific CD8 T-cell response: it is even bigger than we thought. J. Virol. 2007. 81: 2002-2011. - PubMed
  236. Scheuplein, F., Schwarz, N., Adriouch, S., Krebs, C., Bannas, P., Rissiek, B. et al., NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J. Immunol. 2009. 182: 2898-2908. - PubMed
  237. Mohammed, R. N., Wehenkel, S. C., Galkina, E. V., Yates, E. K., Preece, G., Newman, A., Watson, H. A. et al., ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells. Sci. Rep. 2019. 9: 5487. - PubMed
  238. McGregor, D. D. and Gowans, J. L., The Antibody Response of Rats Depleted of Lymphocytes by Chronic Drainage from the Thoracic Duct. J. Exp. Med. 1963. 117: 303-320. - PubMed
  239. Steinert, E. M., Schenkel, J. M., Fraser, K. A., Beura, L. K., Manlove, L. S., Igyarto, B. Z., Southern, P. J. et al., Quantifying memory CD8 T Cells Reveals regionalization of immunosurveillance. Cell 2015. 161: 737-749. - PubMed
  240. Teijaro, J., Turner, D., Pham, Q.-M., Wherry, E., Lefrançois, L. and Farber, D., Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection.J. Immunol. 2011. 187: 5510-5514. - PubMed
  241. Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R. S., Carpenter, D. J., Senda, T. et al., Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal Sites. Cell. Rep. 2017. 20: 2921-2934. - PubMed
  242. Shinoda, K., Tokoyoda, K., Hanazawa, A., Hayashizaki, K., Zehentmeier, S., Hosokawa, H., Iwamura, C. et al., Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc. Natl. Acad. Sci. U. S. A. 2012. 109: 7409-7414. - PubMed
  243. Tokoyoda, K., Zehentmeier, S., Hegazy, A. N., Albrecht, I., Grün, J. R., Löhning, M., Radbruch, A. et al., Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 2009. 30: 721-730. - PubMed
  244. Okhrimenko, A., Grün, J. R., Westendorf, K., Fang, Z., Reinke, S., von Roth, P., Wassilew, G. et al., Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc. Natl. Acad. Sci. U. S. A. 2014. 111: 9229-9234. - PubMed
  245. Siracusa, F., Durek, P., McGrath, M. A., Sercan-Alp, Ö., Rao, A., Du, W., Cendón, C. et al., CD69(+) memory T lymphocytes of the bone marrow and spleen express the signature transcripts of tissue-resident memory T lymphocytes. Eur. J. Immunol., 2019. - PubMed
  246. Clark, R. A., Watanabe, R., Teague, J. E., Schlapbach, C., Tawa, M. C., Adams, N., Dorosario, A. A. et al., Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med., 2012. 4: 117ra7. - PubMed
  247. Bartolome-Casado, R., Landsverk, O. J. B., Chauhan, S. K., Richter, L., Phung, D., Greiff, V., Risnes, L. F. et al., Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med., 2019. - PubMed
  248. Snyder, M. E., Finlayson, M. O., Connors, T. J., Dogra, P., Senda, T., Bush, E., Carpenter, D. et al., Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 2019. 4. - PubMed
  249. Schenkel, J. M. and Masopust, D., Tissue-resident memory T cells. Immunity, 2014. 41: 886-897. - PubMed
  250. Radbruch, A., McGrath, M. A., Siracusa, F., Hoffmann, U., Sercan-Alp, Ö., Hutloff, A., Tokoyoda, K. et al., Homeostasis and durability of T-cell memory-the resting and the restless T-cell memory. Cold. Spring. Harb. Perspect. Biol. 2021. 13. - PubMed
  251. Behr, F. M., Parga-Vidal, L., Kragten, N. A. M., van Dam, T. J. P., Wesselink, T. H., Sheridan, B. S., Arens, R. et al., Tissue-resident memory CD8(+) T cells shape local and systemic secondary T cell responses.Nat. Immunol. 2020. 21: 1070-1081. - PubMed
  252. Fonseca, R., Beura, L. K., Quarnstrom, C. F., Ghoneim, H. E., Fan, Y., Zebley, C. C., Scott, M. C. et al., Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 2020. 21: 412-421. - PubMed
  253. Sathaliyawala, T., Kubota, M., Yudanin, N., Turner, D., Camp, P., Thome, J. J. C., Bickham, K. L. et al., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013. 38: p. 187-197. - PubMed
  254. Thome, J. J. C., Yudanin, N., Ohmura, Y., Kubota, M., Grinshpun, B., Sathaliyawala, T., Kato, T. et al., Spatial Map of Human T Cell Compartmentalization and Maintenance over Decades of Life. Cell 2014. 159: 814-828. - PubMed
  255. Watanabe, R., Gehad, A., Yang, C., Scott, L. L., Teague, J. E., Schlapbach, C., Elco, C. P. et al., Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 2015. 7: 279ra39. - PubMed
  256. Hombrink, P., Helbig, C., Backer, R. A., Piet, B., Oja, A. E., Stark, R., Brasser, G. et al., Programs for the persistence, vigilance and control of human CD8(+) lung-resident memory T cells. Nat. Immunol. 2016. 17: 1467-1478. - PubMed
  257. Oja, A. E., Piet, B., Helbig, C., Stark, R., van der Zwan, D., Blaauwgeers, H., Remmerswaal, E. B. M. et al., Trigger-happy resident memory CD4(+) T cells inhabit the human lungs. Mucosal Immunol. 2018. 11: 654-667. - PubMed
  258. Smolders, J., Heutinck, K. M., Fransen, N. L., Remmerswaal, E. B. M., Hombrink, P., ten Berge, I. J. M., van Lier, R. A. W., Huitinga, I. et al., Tissue-resident memory T cells populate the human brain. Nat. Commun. 2018. 9: 4593. - PubMed
  259. Pascutti, M. F., Geerman, S., Collins, N., Brasser, G., Nota, B., Stark, R., Behr, F. et al., Peripheral and systemic antigens elicit an expandable pool of resident memory CD8(+) T cells in the bone marrow. Eur. J. Immunol. 2019. 49: 853-872. - PubMed
  260. Shiow, L. R., Rosen, D. B., Brdicková, N., Xu, Y., An, J., Lanier, L. L., Cyster, J. G. et al., CD69 acts downstream of interferon-[alpha]/[beta] to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 2006. 440: 540-544. - PubMed
  261. Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., Proia, R. L. et al., Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004. 427: 355-360. - PubMed
  262. Feng, C., Woodside, K. J., Vance, B. A., El-Khoury, D., Canelles, M., Lee, J., Gress, R. et al., A potential role for CD69 in thymocyte emigration. Int. Immunol. 2002. 14: 535-544. - PubMed
  263. Skon, C. N., Lee, J. -. Y., Anderson, K. G., Masopust, D., Hogquist, K. A., Jameson, S. C. et al., Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 2013. 14: 1285-1293. - PubMed
  264. Kumar, B. V., Connors, T. J. and Farber, D. L., Human T Cell Development, Localization, and Function throughout Life. Immunity 2018. 48: 202-213. - PubMed
  265. Woon, H. G., Braun, A., Li, J., Smith, C., Edwards, J., Sierro, F., Feng, C. G. et al., Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs. PLoS Pathog. 2016. 12: e1005799. - PubMed
  266. Cepek, K. L., Shaw, S. K., Parker, C. M., Russell, G. J., Morrow, J. S., Rimm, D. L. and Brenner, M. B., Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 1994. 372: 190-193. - PubMed
  267. Du, W., Lenz, D., Köhler, R., Zhang, E., Cendon, C., Li, J., Massoud, M. et al., Rapid Isolation of Functional ex vivo Human Skin Tissue-Resident Memory T Lymphocytes. Front. Immunol. 2021. 12: 624013. - PubMed
  268. Cheuk, S., Schlums, H., Sérézal, I. G., Martini, E., Chiang, S. C., Marquardt, N., Gibbs, A. et al., CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for Cytotoxic Function in Human Skin. Immunity 2017. 46: 287-300. - PubMed
  269. Masopust, D., Choo, D., Vezys, V., Wherry, E. J., Duraiswamy, J., Akondy, R., Wang, J. et al., Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 2010. 207: 553-564. - PubMed
  270. Djenidi, F., Adam, J., Goubar, A., Durgeau, A., Meurice, G., de Montpréville, V., Validire, P. et al., CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 2015. 194: 3475-3486. - PubMed
  271. Koh, J., Kim, S., Kim, M. -. Y., Go, H., Jeon, Y. K., Chung, D. H., Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 2017. 8: 13762-13769. - PubMed
  272. Ganesan, A. P., Clarke, J., Wood, O., Garrido-Martin, E. M., Chee, S. J., Mellows, T., Samaniego-Castruita, D. et al., Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 2017. 18: 940-950. - PubMed
  273. Oja, A. E., Piet, B., van der Zwan D., Blaauwgeers, H., Mensink, M., de Kivit, S., Borst, J. et al., Functional heterogeneity of CD4(+) tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol. 2018. 9: 2654. - PubMed
  274. Gu-Trantien, C., Migliori, E., Buisseret, L., de Wind, A., Brohée, S., Garaud, S., Noël, G. et al., CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017. 2. - PubMed
  275. Thommen, D. S., Koelzer, V. H., Herzig, P., Roller, A., Trefny, M., Dimeloe, S., Kiialainen, A. et al., A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 2018. 24: 994-1004. - PubMed
  276. Simoni, Y., Becht, E., Fehlings, M., Loh, C. Y., Koo, S. -. L., Teng, K. W. W., Yeong, J. P. S. et al., Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018. 557: 575-579. - PubMed
  277. Holt, P. G., Robinson, B. W., Reid, M., Kees, U. R., Warton, A., Dawson, V. H., Rose, A. et al., Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure. Clin. Exp. Immunol. 1986. 66: 188-200. - PubMed
  278. Day, C. E., Zhang, S. D., Riley, J., Gant, T., Wardlaw, A. J., Guillen, C. et al., A novel method for isolation of human lung T cells from lung resection tissue reveals increased expression of GAPDH and CXCR6. J. Immunol. Methods 2009. 342(1-2): 91-97. - PubMed
  279. Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K. -. I., Dowgiert, R. K. and Kupper, T. S., The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 2006. 176: 4431-4439. - PubMed
  280. Piet, B., de Bree, G. J., Smids-Dierdorp, B. S., van der Loos, C. M., Remmerswaal, E. B. M., von der Thüsen, J. H., van Haarst, J. M. W. et al., CD8(+) T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest. 2011. 121: 2254-2263. - PubMed
  281. Mueller, S. N. and Mackay, L K., Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 2016. 16: 79-89. - PubMed
  282. Behr, F. M., Chuwonpad, A., Stark, R. and van Gisbergen, K., Armed and Ready: Transcriptional Regulation of Tissue-Resident Memory CD8 T Cells. Front. Immunol. 2018. 9: 1770. - PubMed
  283. van Gisbergen, K., Zens, K. D. and Munz, C., T-cell memory in tissues. Eur. J. Immunol. 2021. 51: 1310-1324. - PubMed
  284. Beura, L. K., Fares-Frederickson, N. J., Steinert, E. M., Scott, M. C., Thompson, E. A., Fraser, K. A., Schenkel, J. M. et al., CD4(+) resident memory T cells dominate immunosurveillance and orchestrate local recall responses.J. Exp. Med. 2019. - PubMed
  285. Autengruber, A., Gereke, M., Hansen, G., Hennig, C. and Bruder, D., Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur. J. Microbiol. Immunol. 2012. 2: 112-120. - PubMed
  286. Rissiek, B., Haag, F., Boyer, O. and Koch-Nolte, F., Adriouch, S., P2X7 on Mouse T Cells: One Channel, Many Functions. Front. Immunol. 2015. 6: 204. - PubMed
  287. Rissiek, B., Lukowiak, M., Raczkowski, F., Magnus, T., Mittrucker, H. W. and Koch-Nolte, F., In Vivo Blockade of Murine ARTC2.2 During Cell Preparation Preserves the Vitality and Function of Liver Tissue-Resident Memory T Cells. Front. Immunol. 2018. 9: 1580. - PubMed
  288. Stark, R., Wesselink, T. H., Behr, F. M., Kragten, N. A. M., Arens, R., Koch-Nolte, F., van Gisbergen, K. P. J. M. et al., T RM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol. 2018. 3. - PubMed
  289. Behr, F. M., Beumer-Chuwonpad, A., Kragten, N. A. M., Wesselink, T. H., Stark, R. and van Gisbergen, K., Circulating memory CD8(+) T cells are limited in forming CD103(+) tissue-resident memory T cells at mucosal sites after reinfection. Eur. J. Immunol. 2021. 51: 151-166. - PubMed
  290. Anderson, K. G., Mayer-Barber, K., Sung, H., Beura, L., James, B. R., Taylor, J. J., Qunaj, L. et al., Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 2014. 9: 209-222. - PubMed
  291. Ferguson, A., Intraepithelial lymphocytes of the small intestine. Gut 1977. 18: 921-937. - PubMed
  292. Hayday, A., Theodoridis, E., Ramsburg, E. and Shires, J., Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2001. 2: 997-1003. - PubMed
  293. Guy-Grand, D., Vassalli, P., Eberl, G., Pereira, P., Burlen-Defranoux, O., Lemaitre, F., Di Santo, J. P. et al., Origin, trafficking, and intraepithelial fate of gut-tropic T cells. J. Exp. Med. 2013. 210: 1839-1854. - PubMed
  294. Cheroutre, H., Lambolez, F. and Mucida, D., The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2011. 11: 445-456. - PubMed
  295. Van Kaer, L. and Olivares-Villagómez, D., Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. J. Immunol. 2018. 200: 2235-2244. - PubMed
  296. McDonald, B. D., Jabri, B. and Bendelac, A., Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2018. 18: 514-525. - PubMed
  297. Mayassi, T. and Jabri, B., Human intraepithelial lymphocytes. Mucosal Immunol. 2018. 11: 1281-1289. - PubMed
  298. Vandereyken, M., James, O. J. and Swamy, M., Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunol. 2020. 13: 721-731. - PubMed
  299. Eiras, P., Roldán, E., Camarero, C., Olivares, F., Bootello, A. and Roy, G., Flow cytometry description of a novel CD3-/CD7+ intraepithelial lymphocyte subset in human duodenal biopsies: potential diagnostic value in coeliac disease. Cytometry 1998. 34: 95-102. - PubMed
  300. Bhagat, G., Naiyer, A. J., Shah, J. G., Harper, J., Jabri, B., Wang, T. C., Green, P. H. R. et al., Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J. Clin. Invest. 2008. 118: 281-293. - PubMed
  301. Risnes, L. F., Eggesbø, L. M., Zühlke, S., Dahal-Koirala, S., Neumann, R. S., Lundin, K. E. A., Christophersen, A. et al., Circulating CD103+ γδ and CD8+ T cells are clonally shared with tissue-resident intraepithelial lymphocytes in celiac disease. Mucosal Immunol. 2021. 14: 842-851. - PubMed
  302. Jabri, B. and Abadie, V., IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 2015. 15: 771-783. - PubMed
  303. Abadie, V., Discepolo, V. and Jabri, B., Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 2012. 34: 551-566. - PubMed
  304. Jabri, B., de Serre, N. P., Cellier, C., Evans, K., Gache, C., Carvalho, C., Mougenot, J. F. et al., Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 2000. 118: 867-879. - PubMed
  305. Jabri, B., Selby, J. M., Negulescu, H., Lee, L., Roberts, A. I., Beavis, A., Lopez-Botet, M. et al., TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 2002. 17: 487-499. - PubMed
  306. Meresse, B., Curran, S. A., Ciszewski, C., Orbelyan, G., Setty, M., Bhagat, G., Lee, L. et al., Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 2006. 203: 1343-1355. - PubMed
  307. Setty, M., Discepolo, V., Abadie, V., Kamhawi, S., Mayassi, T., Kent, A., Ciszewski, C. et al., Distinct and Synergistic Contributions of Epithelial Stress and Adaptive Immunity to Functions of Intraepithelial Killer Cells and Active Celiac Disease. Gastroenterology 2015. 149: 681-691.e10. - PubMed
  308. Abadie, V., Kim, S. M., Lejeune, T., Palanski, B. A., Ernest, J. D., Tastet, O., Voisine, J. et al., IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature 2020. 578: 600-604. - PubMed
  309. Bondar, C., Araya, R. E., Guzman, L., Rua, E. C., Chopita, N. and Chirdo, F G., Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One 2014. 9: e89068. - PubMed
  310. De Andrés, A., Camarero, C. and Roy, G., Distal duodenum versus duodenal bulb: intraepithelial lymphocytes have something to say in celiac disease diagnosis. Dig. Dis. Sci. 2015. 60: 1004-1009. - PubMed
  311. Halstensen, T. S., Scott, H. and Brandtzaeg, P., Intraepithelial T cells of the TcR gamma/delta+ CD8- and V delta 1/J delta 1+ phenotypes are increased in coeliac disease. Scand. J. Immunol. 1989. 30: 665-672. - PubMed
  312. Kutlu, T., Brousse, N., Rambaud, C., Le Deist, F. and Schmitz, J., Cerf-Bensussan N. Numbers of T cell receptor (TCR) alpha beta+ but not of TcR gamma delta+ intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 1993. 34: 208-214. - PubMed
  313. Camarero, C., Leon, F., Sanchez, L., Asensio, A. and Roy, G., Age-related variation of intraepithelial lymphocytes subsets in normal human duodenal mucosa. Dig. Dis. Sci. 2007. 52: 685-691. - PubMed
  314. Leon, F., Flow cytometry of intestinal intraepithelial lymphocytes in celiac disease. J. Immunol. Methods 2011. 363: 177-186. - PubMed
  315. Camarero, C., Eiras, P., Asensio, A., Leon, F., Olivares, F., Escobar, H., Roy, G., Intraepithelial lymphocytes and coeliac disease: permanent changes in CD3-/CD7+ and T cell receptor gammadelta subsets studied by flow cytometry. Acta Paediatr. 2000. 89: 285-290. - PubMed
  316. Fernández-Bañares, F., Carrasco, A., García-Puig, R., Rosinach, M., González, C., Alsina, M., Loras, C. et al., Intestinal intraepithelial lymphocyte cytometric pattern is more accurate than subepithelial deposits of anti-tissue transglutaminase IgA for the diagnosis of celiac disease in lymphocytic enteritis. PLoS One 2014. 9: e101249. - PubMed
  317. Sánchez-Castañon, M., Castro, B. G., Toca, M., Santacruz, C., Arias-Loste, M., Iruzubieta, P., Crespo, J. et al., Intraepithelial lymphocytes subsets in different forms of celiac disease. Auto. Immun. Highlights 2016. 7: 14. - PubMed
  318. Calleja, S., Vivas, S., Santiuste, M., Arias, L., Hernando, M., Nistal, E., Casqueiro, J. et al., Dynamics of non-conventional intraepithelial lymphocytes-NK, NKT, and γδ T-in celiac disease: relationship with age, diet, and histopathology. Dig. Dis. Sci. 2011. 56: 2042-2049. - PubMed
  319. Ruiz-Ramírez, P., Carreras, G., Fajardo, I., Tristán, E., Carrasco, A., Salvador, I., Zabana, Y. et al., Intraepithelial Lymphocyte Cytometric Pattern Is a Useful Diagnostic Tool for Coeliac Disease Diagnosis Irrespective of Degree of Mucosal Damage and Age-A Validation Cohort. Nutrients 2021. 13: 1684. - PubMed
  320. Olivares-Villagomez, D. and Van Kaer, L., Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 2018. 39: 264-275. - PubMed
  321. Ma, H., Tao, W. and Zhu, S., T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol. Immunol. 2019. - PubMed
  322. Georgiev, H., Ravens, I., Papadogianni, G., Malissen, B., Forster, R. and Bernhardt, G., Blocking the ART2.2/P2X7-system is essential to avoid a detrimental bias in functional CD4 T cell studies. Eur. J. Immunol. 2018. 48: 1078-1081. - PubMed
  323. Konjar, S., Ferreira, C., Blankenhaus, B. and Veldhoen, M., Intestinal Barrier Interactions with Specialized CD8 T Cells. Front. Immunol. 2017. 8: 1281. - PubMed
  324. Chennupati, V., Worbs, T., Liu, X., Malinarich, F. H., Schmitz, S., Haas, J. D., Malissen, B. et al., Intra- and intercompartmental movement of gammadelta T cells: intestinal intraepithelial and peripheral gammadelta T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol. 2010. 185: 5160-5168. - PubMed
  325. Malinarich, F. H., Grabski, E., Worbs, T., Chennupati, V., Haas, J. D., Schmitz, S., Candia, E. et al., Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial gammadelta T cells is functional in vivo. Eur. J. Immunol. 2010. 40: 3378-3388. - PubMed
  326. Pereira, P., Hermitte, V., Lembezat, M. P., Boucontet, L., Azuara, V. and Grigoriadou, K., Developmentally regulated and lineage-specific rearrangement of T cell receptor Valpha/delta gene segments. Eur. J. Immunol. 2000. 30: 1988-1997. - PubMed
  327. Carding, S. R. and Egan, P. J., Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2002. 2: 336-345. - PubMed
  328. Pinti, M., Appay, V., Campisi, J., Frasca, D., Fulop, T., Sauce, D., Larbi, A. et al., Aging of the immune system: Focus on inflammation and vaccination. Eur. J. Immunol. 2016. 46: 2286-301. - PubMed
  329. Palmer, D. B., The effect of age on thymic function. Front. Immunol. 2013. 4: 316. - PubMed
  330. Zlamy, M., Almanzar, G., Parson, W., Schmidt, C., Leierer, J., Weinberger, B., Jeller, V. et al., Efforts of the human immune system to maintain the peripheral CD8+ T cell compartment after childhood thymectomy. Immun. Ageing 2016. 13: 3. - PubMed
  331. Nasi, M., Troiano, L., Lugli, E., Pinti, M., Ferraresi, R., Monterastelli, E., Mussi, C., e al. Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell 2006. 5: 167-175. - PubMed
  332. Kohler, S. and Thiel, A., Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 2009. 113: 769-774. - PubMed
  333. Sauce, D., Larsen, M., Fastenackels, S., Roux, A., Gorochov, G., Katlama, C., Sidi, D. et al., Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J. Immunol. 2012. 189: 5541-5548. - PubMed
  334. Britanova, O. V., Putintseva, E. V., Shugay, M., Merzlyak, E. M., Turchaninova, M. A., Staroverov, D. B., Bolotin, D. A. et al., Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 2014. 192: 2689-2698. - PubMed
  335. Qi, Q., Liu, Y., Cheng, Y., Glanville, J., Zhang, D., Lee, J. Y., Olshen, R. A. et al., Diversity and clonal selection in the human T-cell repertoire. Proc. Natl. Acad. Sci. U. S. A. 2014. 111: 13139-13144. - PubMed
  336. Papagno, L., Spina, C. A., Marchant, A., Salio, M., Rufer, N., Little, S., Dong, T. et al., Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol. 2004. 2: E20. - PubMed
  337. Brenchley, J. M., Karandikar, N. J., Betts, M. R., Ambrozak, D. R., Hill, B. J., Crotty, L. E., Casazza, J. P. et al., Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 2003. 101: 2711-2720. - PubMed
  338. Larbi, A. and Fulop, T., From "truly naive" to "exhausted senescent" T cells: when markers predict functionality. Cytometry A 2014. 85: 25-35. - PubMed
  339. Aiello, A., Farzaneh, F., Candore, G., Caruso, C., Davinelli, S., Gambino, C. M., Ligotti, M. E. et al., Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019. 10: 2247. - PubMed
  340. Coppe, J. P., Desprez, P. Y., Krtolica, A. and Campisi, J., The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 2010. 5: 99-118. - PubMed
  341. Crespo, J., Sun, H., Welling, T. H., Tian, Z. and Zou, W., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 2013. 25: 214-221. - PubMed
  342. Franceschi C, Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E. and De Benedictis, G., Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000. 908: 244-254. - PubMed
  343. Razonable, R. R., Inoue, N., Pinninti, S. G., Boppana, S. B., Lazzarotto, T., Gabrielli, L., Simonazzi, G. et al., Clinical Diagnostic Testing for Human Cytomegalovirus Infections. J. Infect. Dis. 2020. 221: S74-S85. - PubMed
  344. Di Benedetto, S., Derhovanessian, E., Steinhagen-Thiessen, E., Goldeck, D., Muller, L. and Pawelec, G., Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 2015, 16: 631-643. - PubMed
  345. Li, M., Yao, D., Zeng, X., Kasakovski, D., Zhang, Y., Chen, S., Zha, X. et al., Age related human T cell subset evolution and senescence. Immun. Ageing 2019, 16: 24. - PubMed
  346. Nikolich-Žugich, J. and Čičin-Šain, L. Aging of the Immune System Across Different Species. In: Wolf NS, editor. The Comparative Biology of Aging. Dordrecht: Springer Netherlands, 2010. p. 353-376. - PubMed
  347. Calado, R. T. and Dumitriu, B., Telomere dynamics in mice and humans. Semin. Hematol. 2013. 50: 165-174. - PubMed
  348. Čičin-Šain, L., Brien, J. D., Uhrlaub, J. L., Drabig, A., Marandu, T. F. and Nikolich-Žugich, J., Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2013. 8: e1002849. - PubMed
  349. Reese, T. A., Bi, K., Kambal, A., Filali-Mouhim, A., Beura, L. K., Burger, M. C., Pulendran, B. et al., Virgin HW. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response. Cell Host Microbe. 2016. 19: 713-719. - PubMed
  350. Pinchuk, L. M. and Filipov, N M., Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun. Ageing 2008. 5: 1-1. - PubMed
  351. Yuan, R., Meng, Q., Nautiyal, J., Flurkey, K., Tsaih, S. W., Krier, R., Parker, M. G. et al., Genetic coregulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proc. Natl. Acad. Sci. U. S. A. 2012. 109: 8224-8229. - PubMed
  352. Xu, W. and Larbi, A., Markers of T Cell Senescence in Humans. Int. J. Mol. Sci. 2017. 18: 1742. - PubMed
  353. Lanna, A., Gomes, D. C., Muller-Durovic, B., McDonnell, T., Escors, D., Gilroy, D. W., Lee, J. H. et al., A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol. 2017. 18: 354-363. - PubMed
  354. Quinn, K. M., Fox, A., Harland, K. L., Russ, B. E., Li, J., Nguyen, T. H. O., Loh, L. et al., Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells. Cell Rep. 2018. 23: 3512-3524. - PubMed
  355. Chiu, B. C., Martin, B. E., Stolberg, V. R. and Chensue, S W., Cutting edge: Central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 2013. 191: 5793-5796. - PubMed
  356. White, J. T., Cross, E. W., Burchill, M. A., Danhorn, T., McCarter, M. D., Rosen, H. R., O'Connor, B. et al.. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 2016. 7: 11291. - PubMed
  357. Moudra, A., Niederlova, V., Novotny, J., Schmiedova, L., Kubovciak, J., Matejkova, T., Drobek, A. et al., Phenotypic and Clonal Stability of Antigen-Inexperienced Memory-like T Cells across the Genetic Background, Hygienic Status, and Aging. J. Immunol. 2021. 206: 2109-2121. - PubMed
  358. Marandu, T. F., Oduro, J. D., Borkner, L., Dekhtiarenko, I., Uhrlaub, J. L., Drabig, A., Kröger, A. et al., Cicin-Sain L. Immune Protection against Virus Challenge in Aging Mice Is Not Affected by Latent Herpesviral Infections. J. Virol. 2015. 89: 11715-11717. - PubMed
  359. Senda, T., Dogra, P., Granot, T., Furuhashi, K., Snyder, M. E., Carpenter, D. J., Szabo, P. A. et al., Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues over life. Mucosal Immunol. 2019. 12: 378-389. - PubMed
  360. Thome, J. J., Bickham, K. L., Ohmura, Y., Kubota, M., Matsuoka, N., Gordon, C., Granot, T. et al., Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 2016. 22: 72-77. - PubMed
  361. Kverneland, A. H., Streitz, M., Geissler, E., Hutchinson, J., Vogt, K., Boes, D., Niemann, N. et al., Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytometry A 2016. 89: 543-564. - PubMed
  362. Santner-Nanan, B., Seddiki, N., Zhu, E., Quent, V., Kelleher, A., Fazekas de St Groth, B. and Nanan, R., Accelerated age-dependent transition of human regulatory T cells to effector memory phenotype. Int. Immunol. 2008. 20: 375-383. - PubMed
  363. Abbas, A. K., Benoist, C., Bluestone, J. A., Campbell, D. J., Ghosh, S., Hori, S., Jiang, S. et al., Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 2013. 14: 307-308. - PubMed
  364. Thornton, A. M., Korty, P. E., Tran, D. Q., Wohlfert, E. A., Murray, P. E., Belkaid, Y. and Shevach, E. M., Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 2010. 184: 3433-3441. - PubMed
  365. Weiss, J. M., Bilate, A. M., Gobert, M., Ding, Y., Curotto de Lafaille, M. A., Parkhurst, C. N., Xiong, H. et al., Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 2012. 209: 1723-1742, S1721. - PubMed
  366. Akimova, T., Beier, U. H., Wang, L., Levine, M. H. and Hancock, W. W., Helios expression is a marker of T cell activation and proliferation. PLoS One 2011. 6: e24226. - PubMed
  367. Bin Dhuban, K., d'Hennezel, E., Nashi, E., Bar-Or, A., Rieder, S., Shevach, E. M., Nagata, S. and Piccirillo, C. A., Coexpression of TIGIT and FCRL3 identifies Helios+ human memory regulatory T cells. J. Immunol. 2015. 194: 3687-3696. - PubMed
  368. Lam, A. J., Lin, D. T. S., Gillies, J. K., Uday, P., Pesenacker, A. M., Kobor, M. S. and Levings, M. K., Optimized CRISPR-mediated gene knock-in reveals FOXP3-independent control of human Treg identity. Cell Rep. 2021. 36: 109494. - PubMed
  369. Milpied, P., Renand, A., Bruneau, J., Mendes-da-Cruz, D. A., Jacquelin, S., Asnafi, V., Rubio, M. T. et al., Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 2009. 39: 1466-1471. - PubMed
  370. Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. and Campbell, D. J., Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 2012. 119: 4430-4440. - PubMed
  371. MacDonald, K. G., Dawson, N. A., Huang, Q., Dunne, J. V., Levings, M. K. and Broady, R., Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol. 2015. 135: 946-e949. - PubMed
  372. Ferreira, R. C., Rainbow, D. B., Rubio Garcia, A., Pekalski, M. L., Porter, L., Oliveira, J. J., Waldron-Lynch, F. et al., Human IL-6R(hi)TIGIT(-) CD4(+)CD127(low)CD25(+) T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clin. Immunol. 2017. 179: 25-39. - PubMed
  373. Pesenacker, A. M., Bending, D., Ursu, S., Wu, Q., Nistala, K. and Wedderburn, L. R., CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood 2013. 121: 2647-2658. - PubMed
  374. Hoeppli, R. E., MacDonald, K. N., Leclair, P., Fung, V. C. W., Mojibian, M., Gillies, J., Rahavi, S. M. R. et al., Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am. J. Transplant 2019. 19: 62-76. - PubMed
  375. Delacher, M., Imbusch, C. D., Hotz-Wagenblatt, A., Mallm, J. P., Bauer, K., Simon, M., Riegel, D. et al., Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF. Immunity 2020. 52: 295-312.e211. - PubMed
  376. Delacher, M., Imbusch, C. D., Weichenhan, D., Breiling, A., Hotz-Wagenblatt, A., Trager, U., Hofer, A. C. et al., Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 2017. 18: 1160-1172. - PubMed
  377. Delacher, M., Schmidl, C., Herzig, Y., Breloer, M., Hartmann, W., Brunk, F., Kagebein, D. et al., Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nat. Commun. 2019. 10: 1621. - PubMed
  378. Delacher, M., Simon, M., Sanderink, L., Hotz-Wagenblatt, A., Wuttke, M., Schambeck, K., Schmidleithner, L. et al., Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 2021. 54: 702-720.e717. - PubMed
  379. Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C. et al., Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009. 30: 899-911. - PubMed
  380. Allan, S. E., Crome, S. Q., Crellin, N. K., Passerini, L., Steiner, T. S., Bacchetta, R., Roncarolo, M. G. and Levings, M. K., Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 2007. 19: 345-354. - PubMed
  381. McMurchy, A. N. and Levings, M. K., Suppression assays with human T regulatory cells: a technical guide. Eur. J. Immunol. 2012. 42: 27-34. - PubMed
  382. Pesenacker, A. M., Wang, A. Y., Singh, A., Gillies, J., Kim, Y., Piccirillo, C. A., Nguyen, D. et al., A Regulatory T-Cell Gene Signature Is a Specific and Sensitive Biomarker to Identify Children With New-Onset Type 1 Diabetes. Diabetes 2016. 65: 1031-1039. - PubMed
  383. Rainbow, D. B., Yang, X., Burren, O., Pekalski, M. L., Smyth, D. J., Klarqvist, M. D., Penkett, C. J. et al., Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing. Eur. J. Immunol. 2015. 45: 3200-3203. - PubMed
  384. Spreafico, R., Rossetti, M., van den Broek, T., Jansen, N. J., Zhang, H., Moshref, M., Prakken, B. et al., A sensitive protocol for FOXP3 epigenetic analysis in scarce human samples. Eur. J. Immunol. 2014. 44: 3141-3143. - PubMed
  385. Seddiki, N., Santner-Nanan, B., Martinson, J., Zaunders, J., Sasson, S., Landay, A., Solomon, M. et al., Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 2006. 203: 1693-1700. - PubMed
  386. Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. and Toes, R. E., Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 2007. 37: 129-138. - PubMed
  387. Wu, D., Han, J. M., Yu, X., Lam, A. J., Hoeppli, R. E., Pesenacker, A. M., Huang, Q. et al., Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol. 2019. 49: 336-347. - PubMed
  388. Dijke, I. E., Hoeppli, R. E., Ellis, T., Pearcey, J., Huang, Q., McMurchy, A. N., Boer, K. et al., Discarded Human Thymus Is a Novel Source of Stable and Long-Lived Therapeutic Regulatory T Cells. Am. J. Transplant 2016. 16: 58-71. - PubMed
  389. Dawson, N. A. J., Lam, A. J., Cook, L., Hoeppli, R. E., Broady, R., Pesenacker, A. M. and Levings, M. K., An optimized method to measure human FOXP3(+) regulatory T cells from multiple tissue types using mass cytometry. Eur. J. Immunol. 2018. 48: 1415-1419. - PubMed
  390. Mason, G. M., Lowe, K., Melchiotti, R., Ellis, R., de Rinaldis, E., Peakman, M., Heck, S. et al., Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry. J. Immunol. 2015. 195: 2030-2037. - PubMed
  391. Chen, X. and Oppenheim, J. J., Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int. Immunopharmacol. 2011. 11: 1489-1496. - PubMed
  392. Ward-Hartstonge, K. A. and Kemp, R. A., Regulatory T-cell heterogeneity and the cancer immune response. Clin. Transl. Immunol. 2017. 6: e154. - PubMed
  393. Ivison, S., Malek, M., Garcia, R. V., Broady, R., Halpin, A., Richaud, M., Brant, R. F. et al., A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight 2018. 3. - PubMed
  394. Fox, B. C., Bignone, P. A., Brown, P. J. and Banham, A. H., Defense of the clone: antibody 259D effectively labels human FOXP3 in a variety of applications. Blood 2008. 111: 3897-3899. - PubMed
  395. Kaur, G., Goodall C. J., Jarvis, L. B. and Gaston Hill, J. S., Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells-identification of Foxp3Delta7 in human regulatory T cells. Mol. Immunol. 2010. 48: 321-332. - PubMed
  396. Law, J. P., Hirschkorn, D. F., Owen, R. E., Biswas, H. H., Norris, P. J. and Lanteri, M. C., The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells. Cytometry A 2009. 75: 1040-1050. - PubMed
  397. Mahnke, Y. D., Beddall, M. H. and Roederer, M., OMIP-015: human regulatory and activated T-cells without intracellular staining. Cytometry A 2013. 83: 179-181. - PubMed
  398. Pillai, V. and Karandikar, N. J., Attack on the clones? Human FOXP3 detection by PCH101, 236A/E7, 206D, and 259D reveals 259D as the outlier with lower sensitivity. Blood 2008. 111: 463-464; author reply 464-466. - PubMed
  399. Terstappen, L. W., Meiners, H. and Loken, M. R., A rapid sample preparation technique for flow cytometric analysis of immunofluorescence allowing absolute enumeration of cell subpopulations. J. Immunol. Methods 1989. 123: 103-112. - PubMed
  400. Bonecchi, R., Bianchi, G., Bordignon, P. P., D'Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S. et al., Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998. 187: 129-134. - PubMed
  401. Gosselin, A., Monteiro, P., Chomont, N., Diaz-Griffero, F., Said, E. A., Fonseca, S., Wacleche, V. et al., Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol. 2010. 184: 1604-1616. - PubMed
  402. Halim, L., Romano, M., McGregor, R., Correa, I., Pavlidis, P., Grageda, N., Hoong, S. J. et al., An atlas of human regulatory T helper-like cells reveals features of Th2-like tregs that support a tumorigenic environment. Cell Rep. 2017. 20: 757-770. - PubMed
  403. Sallusto, F., Lenig, D., Mackay, C. R. and Lanzavecchia, A., Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 1998. 187: 875-883. - PubMed
  404. MacDonald, K. N., Ivison, S., Hippen, K. L., Hoeppli, R. E., Hall, M., Zheng, G., Dijke, I. E. et al., Cryopreservation timing is a critical process parameter in a thymic regulatory T-cell therapy manufacturing protocol. Cytotherapy 2019. 21: 1216-1233. - PubMed
  405. Caramalho, I., Nunes-Silva, V., Pires, A. R., Mota, C., Pinto, A. I., Nunes-Cabaco, H., Foxall, R. B. and Sousa, A. E., Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J. Autoimmun. 2015. 56: 98-110. - PubMed
  406. Panduro, M., Benoist, C. and Mathis, D., Tissue Tregs. Annu. Rev. Immunol. 2016. 34: 609-633. - PubMed
  407. Bowcutt, R., Malter, L. B., Chen, L. A., Wolff, M. J., Robertson, I., Rifkin, D. B., Poles, M. et al., Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J. Immunol. Methods 2015. 421: 27-35. - PubMed
  408. Lam, A. J., MacDonald, K. N., Pesenacker, A. M., Juvet, S. C., Morishita, K. A., Bressler, B., iGenoMed, C. et al., Innate Control of Tissue-Reparative Human Regulatory T Cells. J. Immunol. 2019. 202: 2195-2209. - PubMed
  409. Groux, H., O'Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J. E. and Roncarolo, M. G., A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997. 389: 737-742. - PubMed
  410. White, A. M. and Wraith, D. C., Tr1-Like T Cells - An Enigmatic Regulatory T Cell Lineage. Front. Immunol. 2016. 7: 355. - PubMed
  411. Jeurink, P. V., Vissers, Y. M., Rappard, B. and Savelkoul, H. F., T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008. 57: 91-103. - PubMed
  412. Wang, R., Kozhaya, L., Mercer, F., Khaitan, A., Fujii, H. and Unutmaz, D., Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. U. S. A. 2009. 106: 13439-13444. - PubMed
  413. Tran, D. Q., Andersson, J., Wang, R., Ramsey, H., Unutmaz, D. and Shevach, E. M., GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. U. S. A. 2009. 106: 13445-13450. - PubMed
  414. Camisaschi, C., Casati, C., Rini, F., Perego, M., De Filippo, A., Triebel, F., Parmiani, G. et al., LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immunol. 2010. 184: 6545-6551. - PubMed
  415. Gagliani, N., Magnani, C. F., Huber, S., Gianolini, M. E., Pala, M., Licona-Limon, P., Guo, B. et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013. 19: 739-746. - PubMed
  416. Raimondi, G., Shufesky, W. J., Tokita, D., Morelli, A. E. and Thomson, A. W., Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J. Immunol. 2006. 176: 2808-2816. - PubMed
  417. Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Hopner, S. et al., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007. 110: 1225-1232. - PubMed
  418. Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F. et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007. 204: 1257-1265. - PubMed
  419. Rissiek, A., Baumann, I., Cuapio, A., Mautner, A., Kolster, M., Arck, P. C., Dodge - Khatami, A. et al., The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J. Autoimmun. 2015. 58: 12-20. - PubMed
  420. Baecher-Allan, C., Wolf, E. and Hafler, D. A., MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 2006. 176: 4622-4631. - PubMed
  421. Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K. and Ledbetter, J. A., CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 1991. 174: 561-569. - PubMed
  422. Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., Baker, J. et al., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011. 332: 600-603. - PubMed
  423. Norton, S. E., Ward-Hartstonge, K. A., McCall, J. L., Leman, J. K. H., Taylor, E. S., Munro, F., Black, M. A. et al., High-Dimensional Mass Cytometric Analysis Reveals an Increase in Effector Regulatory T Cells as a Distinguishing Feature of Colorectal Tumors. J. Immunol. 2019. - PubMed
  424. Kleinewietfeld, M., Starke, M., Di Mitri, D., Borsellino, G., Battistini, L., Rotzschke, O. and Falk, K., CD49d provides access to "untouched" human Foxp3+ Treg free of contaminating effector cells. Blood 2009. 113: 827-836. - PubMed
  425. Santegoets, S. J., Dijkgraaf, E. M., Battaglia, A., Beckhove, P., Britten, C. M., Gallimore, A., Godkin, A. et al., Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol. Immunother. 2015. 64: 1271-1286. - PubMed
  426. Dwyer, K. M., Hanidziar, D., Putheti, P., Hill, P. A., Pommey, S., McRae, J. L., Winterhalter, A. et al., Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am. J. Transplant 2010. 10: 2410-2420. - PubMed
  427. Schuler, P. J., Schilling, B., Harasymczuk, M., Hoffmann, T. K., Johnson, J., Lang, S. and Whiteside, T. L., Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients. Eur. J. Immunol. 2012. 42: 1876-1885. - PubMed
  428. Iellem, A., Colantonio, L. and D'Ambrosio, D., Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells. Eur. J. Immunol. 2003. 33: 1488-1496. - PubMed
  429. Battaglia, A., Buzzonetti, A., Monego, G., Peri, L., Ferrandina, G., Fanfani, F., Scambia, G. and Fattorossi, A., Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 2008. 123: 129-138. - PubMed
  430. Griseri, T., Asquith, M., Thompson, C. and Powrie, F., OX40 is required for regulatory T cell-mediated control of colitis. J. Exp. Med. 2010. 207: 699-709. - PubMed
  431. Seddiki, N., Cook, L., Hsu, D. C., Phetsouphanh, C., Brown, K., Xu, Y., Kerr, S. J. et al., Human antigen-specific CD4(+) CD25(+) CD134(+) CD39(+) T cells are enriched for regulatory T cells and comprise a substantial proportion of recall responses. Eur. J. Immunol. 2014. 44: 1644-1661. - PubMed
  432. Savage, P. A., Klawon, D. E. J. & Miller, C. H., Regulatory T Cell Development. Annu. Rev. Immunol. 2020. 38: 421-453. - PubMed
  433. Delacher, M., Barra, M. M., Herzig, Y., Eichelbaum, K., Rafiee, M. -. R., Richards, D. M., Träger, U. et al., Quantitative Proteomics Identifies TCF1 as a Negative Regulator of Foxp3 Expression in Conventional T Cells. iScience 2020. 23, 101127. - PubMed
  434. Bacchetta, R., Passerini, L., Gambineri, E., Dai, M., Allan, S. E., Perroni, L., Dagna-Bricarelli, F. et al., Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 2006. 116: 1713-1722. - PubMed
  435. Klein, L., Robey, E. A. & Hsieh, C. S., Central CD4(+) T cell tolerance: deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 2019. 19: 7-18. - PubMed
  436. Tanoue, T., Atarashi, K. & Honda, K., Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 2016. 16: 295-309. - PubMed
  437. Sefik, E., Geva-Zatorsky, N., Oh, S., Konnikova, L., Zemmour, D., McGuire, A. M., Burzyn, D. et al., MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 2015. 349: 993-997. - PubMed
  438. Ohnmacht, C., Park, J. -. H., Cording, S., Wing, J. B., Atarashi, K., Obata, Y., Gaboriau-Routhiau, V. et al., MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 2015. 349: 989-993. - PubMed
  439. Kim, B. S., Kim, B. -. S., Lu, H., Ichiyama, K., Chen, X., Zhang, Y. -. B., Mistry, N. A., Tanaka, K. et al., Generation of RORgammat(+) Antigen-Specific T Regulatory 17 Cells from Foxp3(+) Precursors in Autoimmunity. Cell Rep. 2017. 21: 195-207. - PubMed
  440. Yang, J., Zou, M., Pezoldt, J., Zhou, X. & Huehn, J., Thymus-derived Foxp3(+) regulatory T cells upregulate RORgammat expression under inflammatory conditions. J. Mol. Med. (Berl) 2018. 96: 1387-1394. - PubMed
  441. Delacher, M., Schreiber, L., Richards, D. M., Farah, C., Feuerer, M. and Huehn, J., Transcriptional control of regulatory T cells. Curr. Top. Microbiol. Immunol. 2014. 381: 83-124. - PubMed
  442. Owen, D. L., Mahmud, S. A., Sjaastad, L. E., Williams, J. B., Spanier, J. A., Simeonov, D. R., Ruscher, R. et al., Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 2019. 20: 195-205. - PubMed
  443. Toker, A., Engelbert, D., Garg, G., Polansky, J. K., Floess, S., Miyao, T., Baron, U., Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. 2013. 190: 3180-3188. - PubMed
  444. Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., Lee, J. et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009. 15: 930-939. - PubMed
  445. Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S. E., Benoist, C. et al., PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012. 486: 549-553. - PubMed
  446. Kolodin, D., van Panhuys, N., Li, C., Magnuson, A. M., Cipolletta, D., Miller, C. M., Wagers, A. et al., Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 2015. 21: 543-557. - PubMed
  447. Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J. L., Cerletti, M., Jang, Y. et al., A special population of regulatory T cells potentiates muscle repair. Cell 2013. 155: 1282-1295. - PubMed
  448. Arpaia, N., Green, J. A., Moltedo, B., Arvey, A., Hemmers, S., Yuan, S., Treuting, P. M. et al., A Distinct Function of Regulatory T Cells in Tissue Protection. Cell 2015. 162: 1078-1089. - PubMed
  449. Ito, M., Komai, K., Mise-Omata, S., Iizuka-Koga, M., Noguchi, Y., Kondo, T., Sakai, R. et al., Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019. 565: 246-250. - PubMed
  450. Dombrowski, Y., O'Hagan, T., Dittmer, M., Penalva, R., Mayoral, S. R., Bankhead, P., Fleville, S. et al., Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 2017. 20: 674-680. - PubMed
  451. Ali, N., Zirak, B., Rodriguez, R. S., Pauli, M. L., Truong, H.-A., Lai, K., Ahn, R. et al., Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell 2017. 169: 1119-1129.e1111. - PubMed
  452. Li, C., DiSpirito, J. R., Zemmour, D., Spallanzani, R. G., Kuswanto, W., Benoist, C., Mathis, D. et al., TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype. Cell 2018. 174: 285-299.e212. - PubMed
  453. Miragaia, R. J., Gomes, T., Chomka, A., Jardine, L., Riedel, A., Hegazy, A. N., Whibley, N. et al., Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity 2019. 50: 493-504.e497. - PubMed
  454. Dujardin, H. C., Burlen-Defranoux, O., Boucontet, L., Vieira, P., Cumano, A. and Bandeira, A., Regulatory potential and control of Foxp3 expression in newborn CD4+ T cells. Proc. Natl. Acad. Sci. U. S. A. 2004. 101: 14473-14478. - PubMed
  455. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 1151-1164. - PubMed
  456. Thiault, N., Darrigues, J., Adoue, V., Gros, M., Binet, B., C. Perals, Leobon, B. et al., Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 2015. 16: 628-634. - PubMed
  457. Cowan, J. E., McCarthy, N. I. & Anderson, G., CCR7 Controls Thymus Recirculation, but Not Production and Emigration, of Foxp3(+) T Cells. Cell Rep. 2016. 14: 1041-1048. - PubMed
  458. Liesz, A., Suri-Payer, E., Veltkamp, C., Doerr, H., Sommer, C., Rivest, S., Giese, T. et al., Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 2009. 15: 192-199. - PubMed
  459. Korn, T. et al., Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 2007. 13: 423-431. - PubMed
  460. Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M., Gagliani, N., The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity 2018. 49: 1004-1019. - PubMed
  461. Dong, J., Reddy, J., Gao, W., Bettelli, E., Awasthi, A., Petersen, T. R., Bäckström, B. T. et al., IL-10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes. J. Immunol. 2007. 179: 2389-2396. - PubMed
  462. Kapitein, B., Tiemessen, M. M., Liu, W. M., van Ieperen-van Dijk, A. G., Hoekstra, M. O., van Hoffen, E. and Knol, E. F., The interleukin-10 inducing effect of transforming growth factor-beta on human naive CD4+ T cells from cord blood is restricted to the TH1 subset. Clin. Exp. Immunol. 2007. 147: 352-8. - PubMed
  463. Gerosa, F. et al., Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-gamma and interleukin-10. J. Exp. Med. 1996. 183: 2559-2569. - PubMed
  464. Okamura, T., Sumitomo, S., Morita, K., Iwasaki, Y., Inoue, M., Nakachi, S., Komai, T. et al., TGF-beta3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses. Nat. Commun. 2015. 6: 6329. - PubMed
  465. Alfen, J. S., Larghi, P., Facciotti, F., Gagliani, N., Bosotti, R., Paroni, M., Maglie, S. et al., Intestinal IFN-gamma-producing Tr1-cells co-express CCR5 and PD-1, and down-regulate IL-10 in the inflamed guts of IBD patients. J. Allergy Clin. Immunol. 2018. - PubMed
  466. Brockmann, L., Soukou, S., Steglich, B., Czarnewski, P., Zhao, L., Wende, S., Bedke, T. et al., Molecular and functional heterogeneity of IL-10-producing CD4(+) T cells. Nat. Commun. 2018. 9: 5457. - PubMed
  467. Akdis, M., Verhagen, J., Taylor, A., Karamloo, F., Karagiannidis, C., Crameri, R., Thunberg, S. et al., Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 2004. 199: 1567-1575. - PubMed
  468. Raoul, J. P. Bonnal, G. R., Lugli, E., Marco De Simone, P., Gruarin, J., Brummelman, L., Drufuc, M. et al., Clonally expanded EOMES+ Tr1-like cells in primary and metastatic tumors associate with disease progression. Nat. Immunol. 2021.;22: 735-745. - PubMed
  469. Song, Z., Zhang, T., Li, G., Tang, Y., Luo, Y. and Yu, G., Tr1 responses are elevated in asymptomatic H. pylori-infected individuals and are functionally impaired in H. pylori-gastric cancer patients. Exp. Cell Res. 2018. 367: 251-256. - PubMed
  470. Gregori, S., Bacchetta, R., Hauben, E., Battaglia, M. and Roncarolo, M. -. G., Regulatory T cells: prospective for clinical application in hematopoietic stem cell transplantation. Curr. Opin. Hematol. 2005. 12: 451-456. - PubMed
  471. Desreumaux, P., Foussat, A., Allez, M., Beaugerie, L., Hébuterne, X., Bouhnik, Y., Nachury, M. et al., Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology 2012. 143: 1207-17.e1-2. - PubMed
  472. Geginat, J., Vasco, M., Gerosa, M., Tas, S. W., Pagani, M., Grassi, F., Flavell, R. A. et al., IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Semin. Immunol. 2019. 44: 101330. - PubMed
  473. Assenmacher, M., Löhning, M., Scheffold, A., Manz, R. A., Schmitz, J. and Radbruch, A., Sequential production of IL-2, IFN-gamma and IL-10 by individual staphylococcal enterotoxin B-activated T helper lymphocytes. Eur. J. Immunol. 1998. 28: 1534-1543. - PubMed
  474. Scheffold, A., Lohning, M., Richter, A., Assenmacher, M., Manz, R., Austrup, F., Hamann, A. et al., Analysis and sorting of T cells according to cytokine expression. Eur. Cytokine Netw. 1998. 9: 5-11. - PubMed
  475. Schoenbrunn, A., Frentsch, M., Kohler, S., Keye, J., Dooms, H., Moewes, B., Dong, J. et al., A converse 4-1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg. J. Immunol. 2012. 189: 5985-5994. - PubMed
  476. Okamura, T., Fujio, K., Shibuya, M., Sumitomo, S., Shoda, H., Sakaguchi, S., Yamamoto, K. et al., CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc. Natl. Acad. Sci. U. S. A. 2009. 106: 13974-13979. - PubMed
  477. Sumitomo, S., Nakachi, S., Okamura, T., Tsuchida, Y., Kato, R., Shoda, H., Furukawa, A. et al., Identification of tonsillar CD4(+)CD25(-)LAG3(+) T cells as naturally occurring IL-10-producing regulatory T cells in human lymphoid tissue. J. Autoimmun. 2017. 76: 75-84. - PubMed
  478. Graydon, C. G., Mohideen, S. and Fowke, K. R., LAG3's Enigmatic Mechanism of Action. Front. Immunol. 2020. 11: 615317. - PubMed
  479. Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 1057-1061. - PubMed
  480. Apetoh, L., Quintana, F. J., Pot, C., Joller, N., Xiao, S., Kumar, D., Burns, E. J. et al., The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 2010. 11: 854-861. - PubMed
  481. Pot, C., Jin, H., Awasthi, A., Liu, S. M., Lai, C. -. Y., Madan, R., Sharpe, A. H. et al., Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 2009. 183: 797-801. - PubMed
  482. Kim, J. I., Ho, I. C., Grusby, M. J. and Glimcher, L. H., The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 1999. 10: 745-751. - PubMed
  483. Gandhi, R., Kumar, D., Burns, E. J., Nadeau, M., Dake, B., Laroni, A., Kozoriz, D. et al., Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat. Immunol. 2010. 11: 846-853. - PubMed
  484. Parish, I. A., Marshall, H. D., Staron, M. M., Lang, P. A., Brüstle, A., Chen, J. H., Cui, W. et al., Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J. Clin. Invest. 2014. - PubMed
  485. Neumann, C., Heinrich, F., Neumann, K., Junghans, V., Mashreghi, M. -. F., Ahlers, J., Janke, M. et al., Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 2014. 211: 1807-1819. - PubMed
  486. Iwasaki, Y., Fujio, K., Okamura, T., Yanai, A., Sumitomo, S., Shoda, H., Tamura, T. et al., Egr-2 transcription factor is required for Blimp-1-mediated IL-10 production in IL-27-stimulated CD4+ T cells. Eur. J. Immunol. 2013. 43: 1063-1073. - PubMed
  487. Zhang, P., Lee, J. S., Gartlan, K. H., Schuster, I. S., Comerford, I., Varelias, A., Ullah, M. A. et al., Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci. Immunol. 2017. 2. - PubMed
  488. Pearce, E. L., Mullen, A. C., Martins, G. A., Krawczyk, C. M., Hutchins, A. S., Zediak, V. P., Banica, M. et al., Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 2003. 302: 1041-1043. - PubMed
  489. Intlekofer, A. M., Banerjee, A., Takemoto, N., Gordon, S. M., Dejong, C. S., Shin, H., Hunter, C. A. et al., Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 2008. 321: 408-411. - PubMed
  490. Lupar, E., Brack, M., Garnier, L., Laffont, S., Rauch, K. S., Schachtrup, K., Arnold, S. J. et al., Eomesodermin Expression in CD4+ T Cells Restricts Peripheral Foxp3 Induction. J. Immunol. 2015. 195: 4742-4752. - PubMed
  491. Magnani, C. F., Alberigo, G., Bacchetta, R., Serafini, G., Andreani, M., Roncarolo, M. G., Gregori, S. et al., Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur. J. Immunol. 2011. 41: 1652-1662. - PubMed
  492. Grossman, W. J., Verbsky, J. W., Tollefsen, B. L., Kemper, C., Atkinson, J. P., Ley, T. J. et al., Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004. 104: 2840-2848. - PubMed
  493. Cheroutre, H. and Husain, M. M., CD4 CTL: Living up to the challenge. Semin. Immunol. 2013. 25: 273-281. - PubMed
  494. Cruz-Guilloty, F., Pipkin, M. E., Djuretic, I. M., Levanon, D., Lotem, J., Lichtenheld, M. G., Groner, Y. et al., Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 2009. 206: 51-59. - PubMed
  495. Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica-Worms, D. R., Ley, T. J. et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007. 27: 635-646. - PubMed
  496. Ashley, C. W. and Baecher-Allan, C., Cutting Edge: Responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. J. Immunol. 2009. 183: 4843-4847. - PubMed
  497. Mazzoni, A., Maggi, L., Siracusa, F., Ramazzotti, M., Rossi, M. C., Santarlasci, V., Montaini, G. et al.. Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur. J. Immunol. 2019. 49: 79-95. - PubMed
  498. Kumar, R., Ng, S. and Engwerda, C. The role of IL-10 in malaria: A double edged sword [Internet]. Vol. 10, Frontiers in Immunology. Frontiers Media S.A.; 2019 [cited 2021 Aug 9]. p. 229. Available from: /pmc/articles/PMC6379449/ - PubMed
  499. Kamanaka, M., Kim, S. T., Wan, Y. Y., Sutterwala, F. S., Lara-Tejero, M., Galán, J. E., Harhaj, E. et al., Expression of Interleukin-10 in Intestinal Lymphocytes Detected by an Interleukin-10 Reporter Knockin tiger Mouse. Immunity [Internet] 2006. 25: 941-952. Available from: https://pubmed.ncbi.nlm.nih.gov/17137799/ - PubMed
  500. Chihara, N., Madi, A., Karwacz, K. and Awasthi, A., Kuchroo, V K., Differentiation and characterization of Tr1 cells. Curr. Protoc. Immunol. [Internet] 2016. 2016: 3.27.1-3.27.10. Available from: /pmc/articles/PMC5933847/ - PubMed
  501. Huber, S., Gagliani, N., Esplugues, E., O'Connor, W., Huber, F. J., Chaudhry, A., Kamanaka, M. et al., Th17 Cells Express Interleukin-10 Receptor and Are Controlled by Foxp3- and Foxp3+ Regulatory CD4+ T Cells in an Interleukin-10-Dependent Manner. Immunity 2011. 34: 554-565. Available from: http://www.cell.com/article/S1074761311001294/fulltext - PubMed
  502. Brockmann, L., Gagliani, N., Steglich, B., Giannou, A. D., Kempski, J., Pelczar, P., Geffken, M. et al. IL-10 Receptor Signaling Is Essential for T R 1 Cell Function In Vivo. J. Immunol. 2017. 198: 1130-1141. Available from: http://www.jimmunol.org/content/198/3/1130 - PubMed
  503. Breuer, J., Schneider-Hohendorf, T., Ostkamp, P., Herich, S., Rakhade, S., Antonijevic, I., Klotz, L. et al., VLA-2 blockade in vivo by vatelizumab induces CD4+FoxP3+ regulatory T cells. Int. Immunol. 2019. 31: 407-412. Available from: https://pubmed.ncbi.nlm.nih.gov/30783682/ - PubMed
  504. Kohyama, M., Sugahara, D., Sugiyama, S., Yagita, H., Okumura, K. and Hozumi, N., Inducible costimulator-dependent IL-10 production by regulatory T cells specific for self-antigen. Proc. Natl. Acad. Sci. U. S. A. 2004. 101: 4192-4197. Available from: www.pnas.orgcgidoi10.1073pnas.0400214101 - PubMed
  505. Häringer, B., Lozza, L., Steckel, B. and Geginat, J., Identification and characterization of IL-10/IFN-γ-producing effector-like T cells with regulatory function in human blood. J. Exp. Med. 2009. 206: 1009-1017. Available from: https://pubmed.ncbi.nlm.nih.gov/19414553/ - PubMed
  506. Mascanfroni, I. D., Takenaka, M. C., Yeste, A., Patel, B., Wu, Y., Kenison, J. E., Siddiqui, S. et al., Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 2015. 21: 638-646. Available from: /pmc/articles/PMC4476246/ - PubMed
  507. Mandapathil, M., Szczepanski, M. J., Szajnik, M., Ren, J., Jackson, E. K., Johnson, J. T., Gorelik, E. et al., Adenosine and prostaglandin e2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 2010. 285: 27571-27580. Available from: https://pubmed.ncbi.nlm.nih.gov/20558731/ - PubMed
  508. Zheng, J., Liu, Y., Lau, Y. L. and Tu, W., γδ-T cells: An unpolished sword in human anti-infection immunity. Cell Mol. Immunol. 2013. 10: 50-57. - PubMed
  509. Silva-Santos, B. and Serre, K., Norell H. γδ T cells in cancer. Nat. Rev. Immunol. 2015. 15: 23-38. Available from: http://doi.org/10.1038/nri3904 - PubMed
  510. Tanaka, Y., Sano, S., Nieves, E., De Libero, G., Rosa, D., Modlin, R. L., Brenner, M. B. et al., Nonpeptide ligands for γδ T cells. Proc. Natl. Acad. Sci. U. S. A. 1994. 91: 8175-8179. - PubMed
  511. Godfrey, D. I., Uldrich, A. P., Mccluskey, J. and Rossjohn, J., Moody, D. B., The burgeoning family of unconventional T cells. Nat. Immunol. 2015. 16: 1114-1123. - PubMed
  512. Willcox, B. E. and Willcox, C R., γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 2019. 20: 121-128. Available from: http://doi.org/10.1038/s41590-018-0304-y - PubMed
  513. Halary, F., Pitard, V., Dlubek, D., Krzysiek, R., De, La Salle, H., Merville, P., Dromer, C. et al., Shared reactivity of Vδ2neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 2005. 201: 1567-1578. - PubMed
  514. Morita, C. T., Jin, C., Sarikonda, G. and Wang, H., Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: Discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 2007. 215: 59-76. - PubMed
  515. Davey, M. S., Willcox, C. R., Hunter, S., Kasatskaya, S. A., Remmerswaal, E. B. M., Salim, M., Mohammed, F. et al., The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets. Nat. Commun. 2018. 9: 1-14. - PubMed
  516. Riganti, C., Massaia, M., Davey, M. S. and Eberl, M., Human γδ T-cell responses in infection and immunotherapy: Common mechanisms, common mediators? Eur. J. Immunol. 2012. 42: 1668-1676. - PubMed
  517. Bonneville, M., O'Brien, R. L. and Born, W K., γδ T cell effector functions: A blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 2010. 10: 467-478. Available from: http://doi.org/10.1038/nri2781. - PubMed
  518. Chien, Y. H., Meyer, C. and Bonneville, M., γδ T cells: first line of defense and beyond. Annu. Rev. Immunol. 2014. 32: 121-155. - PubMed
  519. Davodeau, F., Peyrat, M. A., Hallet, M. M., Houde, I., And, H. V. and Bonneville, M., Peripheral selection of antigen receptor junctional features in a major human gd subset. Eur. J. Immunol. 1993. 23: 804-808. - PubMed
  520. Parker, C. M., Groh, V., Band, H., Porcelli, S. A., Morita, C., Fabbi, M., Glass, D. et al., Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med. 1990. 171: 1597-1612. Available from: http://www.jem.org/cgi/doi/10.1084/jem.171.5.1597 - PubMed
  521. Dimova, T., Brouwer, M., Gosselin, F., Tassignon, J., Leo, O., Donner, C., Marchant, A. et al., Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl. Acad. Sci. 2015. 112: E556-E565. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1412058112 - PubMed
  522. Willcox, C. R., Davey, M. S. and Willcox, B E., Development and selection of the human Vγ9Vδ2+ T-Cell Repertoire. Front. Immunol. 2018. 9(JUL): 1-7. - PubMed
  523. Harly, C., Guillaume, Y., Nedellec, S., Peigne, C. M., Monkkonen, H., Monkkonen, J., Li, J. et al., Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 2012. 120: 2269-2279. - PubMed
  524. Rhodes, D. A., Chen, H. -. C., Price, A. J., Keeble, A. H., Davey, M. S., James, L. C., Eberl, M. et al., Activation of Human γδ T Cells by Cytosolic Interactions of BTN3A1 with Soluble Phosphoantigens and the Cytoskeletal Adaptor Periplakin. J. Immunol. 2015. 194: 2390-2398. - PubMed
  525. Salim, M., Knowles, T. J., Baker, A. T., Davey, M. S., Jeeves, M., Sridhar, P., Wilkie, J. et al., BTN3A1 Discriminates gammadelta T Cell Phosphoantigens from Nonantigenic Small Molecules via a Conformational Sensor in Its B30.2 Domain. ACS Chem. Biol. 2017. 12: 2631-2643. - PubMed
  526. Sandstrom, A., Peigne, C. M., Leger, A., Crooks, J. E., Konczak, F., Gesnel, M. C., Breathnach, R. et al., The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity 2014. 40: 490-500. - PubMed
  527. Rigau, M., Ostrouska, S., Fulford, T. S., Johnson, D. N., Woods, K., Mcwilliam, H. E. G., Hudson, C. et al., Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science (80-) 2020. 5516(January): 1-24. - PubMed
  528. Karunakaran, M. M., Willcox, C. R., Mohammed, F., Willcox, B. E. and Herrmann, T., Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vg9Vd2 TCR and Is Essential for Phosphoantigen Sensing. Immunity 2020. 52: 1-12. - PubMed
  529. Hunter, S., Willcox, C. R., Davey, M. S., Kasatskaya, Sofya, A., Jeffery, H. C., Chudakov, D. M. et al., Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 2018. 69: 654-665. - PubMed
  530. Davey, M. S., Willcox, C. R., Baker, A. T., Hunter, S. and Willcox, B E., Recasting Human Vδ1 Lymphocytes in an Adaptive Role. Trends Immunol. 2018. 39: 446-459. - PubMed
  531. Davey, M. S., Willcox, C. R., Joyce, S. P., Ladell, K., Kasatskaya, S. A., McLaren, J. E., Hunter, S. et al., Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 2017. 8: 1-15. Available from: http://doi.org/10.1038/ncomms14760 - PubMed
  532. Ravens, S., Schultze-Florey, C., Raha, S., Sandrock, I., Drenker, M., Oberdörfer, L., Reinhardt, A. et al., Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 2017. 18: 393-401. - PubMed
  533. Correia, D., Fogli, M., Hudspeth, K., Gomes da Silva, M., Mavilio, D. and Silva-Santos, B., Differentiation of human peripheral blood Vd1+ T cell expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 2011. 118: 992-1001. - PubMed
  534. Bouet-Toussaint, F., Cabillic, F., Toutirais, O., Le Gallo, M., Thomas de la Pintiere, C., Genetet, N., Genetet, N. et al., Vg9Vd2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol. Immunother. 2008. 57: 531-539. - PubMed
  535. Mattarollo, S. R., Kenna, T., Nieda, M. and Nicol, A. J., Chemotherapy and zoledronate sensitize solid tumour cells to Vg9Vd2 T cell cytotoxicity. Cancer Immunol. Immunother. 2007. 56: 1285-1297. - PubMed
  536. Almeida, A. R. M., Correia, D. V., Fernandes-Platzgummer, A., da Silva, C. L., Gomes da Silva, M., Anjos, D. R., Silva-Santos, B. et al., Delta One T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof-of-concept. Clin. Cancer Res. 2016 Jan 1;clincanres.0597.2016. Available from: http://clincancerres.aacrjournals.org/content/early/2016/06/15/1078-0432.CCR-16-0597.abstract - PubMed
  537. Ryan, P. L., Sumaria, N., Holland, C. J., Bradford, C. M., Izotova, N., Grandjean, C. L., Jawad, A. S. et al., Heterogeneous yet stable Vδ2 (+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc. Natl. Acad. Sci. 2016. 113: 14378-14383. - PubMed
  538. Prinz, I., Silva-Santos, B. and Pennington, D J., Functional development of gammadelta T cells. Eur. J. Immunol. 2013. 43: 1988-1994. - PubMed
  539. Goodman, T. and Lefrancois, L., Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med. 1989. 170: 1569-1581. - PubMed
  540. Heilig, J. S. and Tonegawa, S., Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 1986. 322: 836-840. - PubMed
  541. Garman, R. D., Doherty, P. J. and Raulet, D H., Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 1986. 45: 733-742. - PubMed
  542. Mallick-Wood, C. A., Lewis, J. M., Richie, L. I., Owen, M. J., Tigelaar, R. E. and Hayday, A C., Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. Science 1998. 279: 1729-1733. - PubMed
  543. Roark, C. L., Aydintug, M. K., Lewis, J., Yin, X., Lahn, M., Hahn, Y. S., Born, W. K. et al., Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J. Leukoc. Biol. 2004. 75: 68-75. - PubMed
  544. Prinz, I., Sansoni, A., Kissenpfennig, A., Ardouin, L., Malissen, M. and Malissen, B., Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat. Immunol. 2006. 7: 995-1003. - PubMed
  545. Koenecke, C., Chennupati, V., Schmitz, S., Malissen, B., Forster, R. and Prinz, I., In vivo application of mAb directed against the gammadelta TCR does not deplete but generates "invisible" gammadelta T cells. Eur. J. Immunol. 2009. 39: 372-379. - PubMed
  546. Sandrock, I., Reinhardt, A., Ravens, S., Binz, C., Wilharm, A., Martins, J., Oberdörfer, L. et al., Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing gammadelta T cells. J. Exp. Med. 2018. 215: 3006-3018. - PubMed
  547. Lopes, N. and Silva-Santos, B., Functional and metabolic dichotomy of murine gammadelta T cell subsets in cancer immunity. Eur. J. Immunol. 2021. 51: 17-26. - PubMed
  548. Lombes, A., Durand, A., Charvet, C., Riviere, M., Bonilla, N., Auffrary, C., Lucas, B. et al., Adaptive-like gamma/delta T Lymphcytes Share Many Common Features with Their alpha/beta T cell Counterparts. J. Immunol. 2015. 195: 1449-1458. - PubMed
  549. Itohara, S., Farr, A. G., Lafaille, J. J., Bonneville, M., Takagaki, Y., Haas, W., Tonegawa, S. et al., Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990. 343: 754-757. - PubMed
  550. Shibata, K., Yamada, H., Hara, H., Kishihara, K. and Yoshikai, Y., Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 2007. 178: 4466-4472. - PubMed
  551. Papotto, P. H., Reinhardt, A., Prinz, I. and Silva-Santos, B., Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 2018. 87: 26-37. - PubMed
  552. Kinjo, Y. and Ueno, K., iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol. Immunol. 2011. 55: 472-482. - PubMed
  553. Shissler, S. C., Bollino, D. R., Tiper, I. V., Bates, J. P., Derakhshandeh, R. and Webb, T. J., Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016. 68: 623-638. - PubMed
  554. Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. and Rossjohn, J., Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018. 48: 453-473. - PubMed
  555. Pellicci, D. G. and Uldrich, A. P., Unappreciated diversity within the pool of CD1d-restricted T cells. Semin. Cell Dev. Biol. 2018. 84: 42-47. - PubMed
  556. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. and Van Kaer, L., NKT cells: what's in a name? Nat. Rev. Immunol. 2004. 4: 231-237. - PubMed
  557. Thierry, A., Robin, A., Giraud, S., Minouflet, S., Barra, A., Bridoux, F., Hauet, T. et al., Identification of invariant natural killer T cells in porcine peripheral blood. Vet. Immunol. Immunopathol. 2012. 149: 272-279. - PubMed
  558. Monzon-Casanova, E., Paletta, D., Starick, L., Muller, I., Sant'Angelo, D. B., Pyz, E. and Herrmann, T., Direct identification of rat iNKT cells reveals remarkable similarities to human iNKT cells and a profound deficiency in LEW rats. Eur. J. Immunol. 2013. 43: 404-415. - PubMed
  559. Gansuvd, B., Hubbard, W. J., Hutchings, A., Thomas, F. T., Goodwin, J., Wilson, S. B., Exley, M. A. et al., Phenotypic and functional characterization of long-term cultured rhesus macaque spleen-derived NKT cells. J. Immunol. 2003. 171: 2904-2911. - PubMed
  560. Yasuda, N., Masuda, K., Tsukui, T., Teng, A. and Ishii, Y., Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor alpha chain. Vet. Immunol. Immunopathol. 2009. 132: 224-231. - PubMed
  561. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H. et al., CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997. 278: 1626-1629. - PubMed
  562. Lopez-Sagaseta, J., Kung, J. E., Savage, P. B., Gumperz, J. and Adams, E. J., The molecular basis for recognition of CD1d/alpha-galactosylceramide by a human non-Valpha24 T cell receptor. PLoS Biol. 2012. 10: e1001412. - PubMed
  563. Gadola, S. D., Dulphy, N., Salio, M. and Cerundolo, V., Valpha24-JalphaQ-independent, CD1d-restricted recognition of alpha-galactosylceramide by human CD4(+) and CD8alphabeta(+) T lymphocytes. J. Immunol. 2002. 168: 5514-5520. - PubMed
  564. Le Nours, J., Praveena, T., Pellicci, D. G., Gherardin, N. A., Ross, F. J., Lim, R. T., Besra, G. S. et al., Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat. Commun. 2016. 7: 10570. - PubMed
  565. Gadola, S. D., Koch, M., Marles-Wright, J., Lissin, N. M., Shepherd, D., Matulis, G., Harlos, K. et al., Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors. J. Exp. Med. 2006. 203: 699-710. - PubMed
  566. Brigl, M., van den Elzen, P., Chen, X., Meyers, J. H., Wu, D., Wong, C. H., Reddington, F. et al., Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 2006. 176: 3625-3634. - PubMed
  567. Uldrich, A. P., Le Nours, J., Pellicci, D. G., Gherardin, N. A., McPherson, K. G., Lim, R. T., Patel, O. et al., CD1d-lipid antigen recognition by the gammadelta TCR. Nat. Immunol. 2013. 14: 1137-1145. - PubMed
  568. Kobayashi, E., Motoki, K., Uchida, T., Fukushima, H. and Koezuka, Y., KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 1995. 7: 529-534. - PubMed
  569. Morita, M., Motoki, K., Akimoto, K., Natori, T., Sakai, T., Sawa, E., Yamaji, K. et al., Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 1995. 38: 2176-2187. - PubMed
  570. Nair, S. and Dhodapkar, M. V., Natural Killer T Cells in Cancer Immunotherapy. Front. Immunol. 2017. 8: 1178. - PubMed
  571. Rossjohn, J., Pellicci, D. G., Patel, O., Gapin, L. and Godfrey, D. I., Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 2012. 12: 845-857. - PubMed
  572. Miyamoto, K., Miyake, S. and Yamamura, T., A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001. 413: 531-534. - PubMed
  573. Yu, K. O., Im, J. S., Molano, A., Dutronc, Y., Illarionov, P. A., Forestier, C., Fujiwara, N. et al., Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc. Natl. Acad. Sci. U. S. A. 2005. 102: 3383-3388. - PubMed
  574. Schmieg, J., Yang, G., Franck, R. W. and Tsuji, M., Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J. Exp. Med. 2003. 198: 1631-1641. - PubMed
  575. Wun, K. S., Cameron, G., Patel, O., Pang, S. S., Pellicci, D. G., Sullivan, L. C., Keshipeddy, S. et al., A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 2011. 34: 327-339. - PubMed
  576. Wun, K. S., Ross, F., Patel, O., Besra, G. S., Porcelli, S. A., Richardson, S. K., Keshipeddy, S. et al., Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex. J. Biol. Chem. 2012. 287: 39139-39148. - PubMed
  577. Freigang, S., Landais, E., Zadorozhny, V., Kain, L., Yoshida, K., Liu, Y., Deng, S. et al., Scavenger receptors target glycolipids for natural killer T cell activation. J. Clin. Invest. 2012. 122: 3943-3954. - PubMed
  578. Liu, Y. D., Goff, R., Zhou, D., Mattner, J., Sullivan, B. A., Khurana, A., Cantu, C., 3rd et al., A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 2006. 312: 34-39. - PubMed
  579. Matsuda, J. L., Naidenko, O. V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C. R., Koezuka, Y. et al., Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 2000. 192: 741-754. - PubMed
  580. Gumperz, J. E., Miyake, S., Yamamura, T. and Brenner, M. B., Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 2002. 195: 625-636. - PubMed
  581. Sidobre, S. and Kronenberg, M., CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 2002. 268: 107-121. - PubMed
  582. Boyson, J. E., Rybalov, B., Koopman, L. A., Exley, M., Balk, S. P., Racke, F. K., Schatz, F. et al., CD1d and invariant NKT cells at the human maternal-fetal interface. Proc. Natl. Acad. Sci. U. S. A. 2002. 99: 13741-13746. - PubMed
  583. Thomas, S. Y., Hou, R., Boyson, J. E., Means, T. K., Hess, C., Olson, D. P., Strominger, J. L. et al., CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 2003. 171: 2571-2580. - PubMed
  584. Aricescu, A. R., Lu, W. and Jones, E. Y., A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 2006. 62: 1243-1250. - PubMed
  585. Ng, S. S., Souza-Fonseca-Guimaraes, F., Rivera, F. L., Amante, F. H., Kumar, R., Gao, Y., Sheel, M. et al., Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clin. Transl. Immunol. 2018. 7: e1003. - PubMed
  586. Boyum, A., Separation of leukocytes from blood and bone marrow. Introduction. Scand. J. Clin. Lab. Invest. Suppl. 1968. 97: 7. - PubMed
  587. Lee, P. T., Benlagha, K., Teyton, L. and Bendelac, A., Distinct functional lineages of human V(alpha)24 natural killer T cells. J. Exp. Med. 2002. 195: 637-641. - PubMed
  588. Montoya, C. J., Pollard, D., Martinson, J., Kumari, K., Wasserfall, C., Mulder, C. B., Rugeles, M. T. et al., Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007. 122: 1-14. - PubMed
  589. Li, F., Yang, M., Wang, L., Williamson, I., Tian, F., Qin, M., Shah, P. K. et al., Autofluorescence contributes to false-positive intracellular Foxp3 staining in macrophages: a lesson learned from flow cytometry. J. Immunol. Methods 2012. 386: 101-107. - PubMed
  590. Cameron, G., Pellicci, D. G., Uldrich, A. P., Besra, G. S., Illarionov, P., Williams, S. J., La Gruta, N. L. et al., Antigen Specificity of Type I NKT Cells Is Governed by TCR beta-Chain Diversity. J. Immunol. 2015. 195: 4604-4614. - PubMed
  591. Van Kaer, L. and Wu, L., Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front. Immunol. 2018. 9: 519. - PubMed
  592. Juno, J. A., Keynan, Y. and Fowke, K. R., Invariant NKT cells: regulation and function during viral infection. PLoS Pathog. 2012. 8: e1002838. - PubMed
  593. Shekhar, S., Joyee, A. G. and Yang, X., Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections? J. Innate Immun. 2014. 6: 575-584. - PubMed
  594. Bae, E. A., Seo, H., Kim, I. K., Jeon, I. and Kang, C. Y., Roles of NKT cells in cancer immunotherapy. Arch. Pharm. Res. 2019. 42: 543-548. - PubMed
  595. Veldt, B. J., van der Vliet, H. J., von Blomberg, B. M., van Vlierberghe, H., Gerken, G., Nishi, N., Hayashi, K. et al., Randomized placebo controlled phase I/II trial of alpha-galactosylceramide for the treatment of chronic hepatitis C. J. Hepatol. 2007. 47: 356-365. - PubMed
  596. Woltman, A. M., Ter Borg, M. J., Binda, R. S., Sprengers, D., von Blomberg, B. M., Scheper, R. J., Hayashi, K. et al., Alpha-galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial. Antivir. Ther. 2009. 14: 809-818. - PubMed
  597. Tefit, J. N., Crabe, S., Orlandini, B., Nell, H., Bendelac, A., Deng, S., Savage, P. B. et al., Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination. Vaccine 2014. 32: 6138-6145. - PubMed
  598. Wolf, B. J., Choi, J. E. and Exley, M. A., Novel Approaches to Exploiting Invariant NKT Cells in Cancer Immunotherapy. Front. Immunol. 2018. 9: 384. - PubMed
  599. Xu, X., Huang, W., Heczey, A., Liu, D., Guo, L., Wood, M., Jin, J. et al., NKT Cells Coexpressing a GD2-Specific Chimeric Antigen Receptor and IL15 Show Enhanced In Vivo Persistence and Antitumor Activity against Neuroblastoma. Clin. Cancer Res. 2019. 25: 7126-7138. - PubMed
  600. Holz, L. E., Chua, Y. C., de Menezes, M. N., Anderson, R. J., Draper, S. L., Compton, B. J., Chan, S. T. S. et al., Glycolipid-peptide vaccination induces liver-resident memory CD8(+) T cells that protect against rodent malaria. Sci. Immunol. 2020. 5. - PubMed
  601. Snyder-Cappione, J. E., Tincati, C., Eccles-James, I. G., Cappione, A. J., Ndhlovu, L. C., Koth, L. L. and Nixon, D. F., A comprehensive ex vivo functional analysis of human NKT cells reveals production of MIP1-alpha and MIP1-beta, a lack of IL-17, and a Th1-bias in males. PLoS One 2010. 5: e15412. - PubMed
  602. Liu, J., Hill, B. J., Darko, S., Song, K., Quigley, M. F., Asher, T. E., Morita, Y. et al., The peripheral differentiation of human natural killer T cells. Immunol. Cell Biol. 2019. 97: 586-596. - PubMed
  603. Yuling, H., Ruijing, X., Li, L., Xiang, J., Rui, Z., Yujuan, W., Lijun, Z. et al., EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res. 2009. 69: 7935-7944. - PubMed
  604. Savage, A. K., Constantinides, M. G., Han, J., Picard, D., Martin, E., Li, B., Lantz, O. et al., The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008. 29: 391-403. - PubMed
  605. Knox, J. J., Cosma, G. L., Betts, M. R. and McLane, L. M., Characterization of T-bet and eomes in peripheral human immune cells. Front. Immunol. 2014. 5: 217. - PubMed
  606. Ohteki, T. and MacDonald, H R., Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J. Exp. Med. 1994. 180: 699-704. - PubMed
  607. Makino, Y., Kanno, R., Ito, T., Higashino, K. and Taniguchi, M., Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int. Immunol. 1995. 7: 1157-1161. - PubMed
  608. Wei, D. G., Curran, S. A., Savage, P. B., Teyton, L. and Bendelac, A., Mechanisms imposing the Vbeta bias of Valpha14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 2006. 203: 1197-1207. - PubMed
  609. Lantz, O. and Bendelac, A., An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J. Exp. Med. 1994. 180: 1097-1106. - PubMed
  610. Bendelac, A., Lantz, O., Quimby, M. E., Yewdell, J. W., Bennink, J. R. and Brutkiewicz, R R., CD1 recognition by mouse NK1+ T lymphocytes. Science 1995. 268: 863-865. - PubMed
  611. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. and Bendelac, A., In Vivo Identification of Glycolipid Antigen-Specific T Cells Using Fluorescent Cd1d Tetramers. J. Exp. Med. 2000. 191: 1895-1904. - PubMed
  612. Moran, A. E., Holzapfel, K. L., Xing, Y., Cunningham, N. R., Maltzman, J. S., Punt, J. and Hogquist, K A., T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 2011. 208: 1279-1289. - PubMed
  613. Kovalovsky, D., Uche, O. U., Eladad, S., Hobbs, R. M., Yi, W., Alonzo, E., Chua, K. et al., The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 2008. 9: 1055-1064. - PubMed
  614. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. and Bendelac, A., A thymic precursor to the NK T cell lineage. Science 2002. 296: 553-555. - PubMed
  615. Benlagha, K., Wei, D. G., Veiga, J., Teyton, L. and Bendelac, A., Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 2005. 202: 485-492. - PubMed
  616. Pellicci, D. G., Hammond, K. J. L., Uldrich, A. P., Baxter, A. G., Smyth, M. J. and Godfrey, D I., A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J. Exp. Med. 2002. 195: 835-844. - PubMed
  617. Wang, H. and Hogquist, K A., CCR7 defines a precursor for murine iNKT cells in thymus and periphery. Elife 2018. https://doi.org/10.7554/eLife.34793. - PubMed
  618. Berzins, S. P., McNab, F. W., Jones, C. M., Smyth, M. J., and Godfrey, D I., Long-Term Retention of Mature NK1.1+ NKT Cells in the Thymus. J. Immunol. 2006. 176: 4059-4065. - PubMed
  619. Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. and Hogquist, K A., Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 2013. 14: 1146-1154. - PubMed
  620. Georgiev, H., Ravens, I., Benarafa, C., Förster, R. and Bernhardt, G., Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat. Commun. 2016. 7: 13116. - PubMed
  621. Cameron, G. and Godfrey, D I., Differential surface phenotype and context-dependent reactivity of functionally diverse NKT cells. Immunol. Cell Biol. 2018. https://doi.org/10.1111/imcb.12034. - PubMed
  622. Harsha Krovi, S., Zhang, J., Michaels-Foster, M. J., Brunetti, T., Loh, L., Scott-Browne, J. and Gapin, L., Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat. Commun. 2020. 11: 6238. - PubMed
  623. Klibi, J., Amable, L. and Benlagha, K., A focus on natural killer T-cell subset characterization and developmental stages. Immunol. Cell Biol. 2020. 98: 358-368. - PubMed
  624. Crosby, C. M. and Kronenberg, M., Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 2018. 18: 559-574. - PubMed
  625. Salou, M., Legoux, F., Gilet, J., Darbois, A., Du Halgouet, A., Alonso, R., Richer, W. et al., A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 2019. 216: 133-151. - PubMed
  626. Brigl, M., Tatituri, R. V. V., Watts, G. F. M., Bhowruth, V., Leadbetter, E. A., Barton, N., Cohen, N. R. et al., Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 2011. 208: 1163-1177. - PubMed
  627. Velazquez, P., Cameron, T. O., Kinjo, Y., Nagarajan, N., Kronenberg, M. and Dustin, M L., Cutting Edge: Activation by Innate Cytokines or Microbial Antigens Can Cause Arrest of Natural Killer T Cell Patrolling of Liver Sinusoids. J. Immunol. 2008. 180: 2024-2028. - PubMed
  628. Salio, M., Silk, J. D., Jones, E. Y. and Cerundolo, V., Biology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 2014. 32: 323-366. - PubMed
  629. Wang, H. and Hogquist, K A., How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Front. Immunol. 2018. 9: 1450. - PubMed
  630. Jungblut, M., Oeltze, K., Zehnter, I., Hasselmann, D. and Bosio, A., Standardized preparation of single-cell suspensions from mouse lung tissue using the gentleMACS Dissociator. J. Vis. Exp. 2009. - PubMed
  631. Liu, Y., Goff, R. D., Zhou, D., Mattner, J., Sullivan, B. A., Khurana, A., Cantu, C. 3rd et al., A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 2006. 312: 34-39. - PubMed
  632. Lee, Y. J., Wang, H., Starrett, G. J., Phuong, V., Jameson, S. C., Hogquist, K. A., Tissue-Specific Distribution of iNKT Cells Impacts Their Cytokine Response. Immunity 2015. 43: 566-578. - PubMed
  633. Ziętara, N., Łyszkiewicz, M., Witzlau, K., Naumann, R., Hurwitz, R., Langemeier, J. et al., Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc. Natl. Acad. Sci. U. S. A. 2013. 110: 7407-7412. - PubMed
  634. Winter, S. J., Kunze-Schumacher, H., Imelmann, E., Grewers, Z., Osthues, T., Krueger, A., MicroRNA miR-181a/b-1 controls MAIT cell development. Immunol. Cell Biol. 2019. 97: 190-202. - PubMed
  635. Kurioka, A., Walker, L. J., Klenerman, P. and Willberg, C B., MAIT cells: new guardians of the liver. Clin. Transl. Immunol. 2016. 5: e98. - PubMed
  636. Moreira-Teixeira, L., Resende, M., Coffre, M., Devergne, O., Herbeuval, J. -. P., Hermine, O., Schneider, E. et al., Proinflammatory environment dictates the IL-17-producing capacity of human invariant NKT cells. J. Immunol. 2011. 186: 5758-5765. - PubMed
  637. Rossjohn, J., Gras, S., Miles, J. J., Turner, S. J., Godfrey, D. I. and McCluskey, J., T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 2015. 33: 169-200. - PubMed
  638. Kjer-Nielsen, L., Patel, O., Corbett, A. J., Le Nours, J., Meehan, B., Liu, L., Bhati, M. et al., MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012. 491: 717-723. - PubMed
  639. Kjer-Nielsen, L., Corbett, A. J., Chen, Z., Liu, L., Mak, J. Y., Godfrey, D. I., Rossjohn, J. et al., An overview on the identification of MAIT cell antigens. Immunol. Cell Biol. 2018. 96: 573-587. - PubMed
  640. Corbett, A. J., Eckle, S. B., Birkinshaw, R. W., Liu, L., Patel, O., Mahony, J., Chen, Z. et al., T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014. 509: 361-365. - PubMed
  641. Koay, H. F., Gherardin, N. A., Enders, A., Loh, L., Mackay, L. K., Almeida, C. F., Russ, B. E. et al., A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 2016. 17: 1300-1311. - PubMed
  642. Koay, H. F., Godfrey, D. I. and Pellicci, D. G., Development of mucosal-associated invariant T cells. Immunol. Cell Biol. 2018. - PubMed
  643. Gherardin, N. A., Souter, M. N., Koay, H. F., Mangas, K. M., Seemann, T., Stinear, T. P., Eckle, S. B. et al., Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 2018. 96: 507-525. - PubMed
  644. Le Bourhis, L., Martin, E., Peguillet, I., Guihot, A., Froux, N., Core, M., Levy, E. et al., Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 2010. 11: 701-708. - PubMed
  645. Tang, X. Z., Jo, J., Tan, A. T., Sandalova, E., Chia, A., Tan, K. C. et al., IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 2013. 190: 3142-3152. - PubMed
  646. Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M. et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011. 117: 1250-1259. - PubMed
  647. Treiner, E., Duban, L., Bahram, S., Radosavljevic, M., Wanner, V., Tilloy, F., Affaticati, P. et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003. 422: 164-169. - PubMed
  648. Reantragoon, R., Corbett, A. J., Sakala, I. G., Gherardin, N. A., Furness, J. B., Chen, Z., Eckle, S. B. et al., Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 2013. 210: 2305-2320. - PubMed
  649. Walker, L. J., Kang, Y. H., Smith, M. O., Tharmalingham, H., Ramamurthy, N., Fleming, V. M., Sahgal, N. et al., Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 2012. 119: 422-433. - PubMed
  650. Le Bourhis, L., Dusseaux, M., Bohineust, A., Bessoles, S., Martin, E., Premel, V. et al., MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013. 9: e1003681. - PubMed
  651. Wang, H., D'Souza, C., Lim, X. Y., Kostenko, L., Pediongco, T. J., Eckle, S. B. G., Meehan, B. S. et al., MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun. 2018. 9: 3350. - PubMed
  652. D'Souza, C., Chen, Z. and Corbett, A. J., Revealing the protective and pathogenic potential of MAIT cells. Mol. Immunol. 2018. 103: 46-54. - PubMed
  653. Ussher, J. E., Bilton, M., Attwod, E., Shadwell, J., Richardson, R., de Lara, C., Mettke, E. et al., CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 2014. 44: 195-203. - PubMed
  654. Ussher, J. E., Willberg, C. B. and Klenerman, P., MAIT cells and viruses. Immunol. Cell Biol. 2018. 96: 630-641. - PubMed
  655. van Wilgenburg, B., Scherwitzl, I., Hutchinson, E. C., Leng, T., Kurioka, A., Kulicke, C., de Lara, C. et al., MAIT cells are activated during human viral infections. Nat. Commun. 2016. 7: 11653. - PubMed
  656. Loh, L., Wang, Z., Sant, S., Koutsakos, M., Jegaskanda, S., Corbett, A. J. et al., Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl. Acad. Sci. U. S. A. 2016. 113: 10133-10138. - PubMed
  657. Rouxel, O. and Lehuen, A., Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol. Cell Biol. 2018. 96: 618-629. - PubMed
  658. Gibbs, A., Leeansyah, E., Introini, A., Paquin-Proulx, D., Hasselrot, K., Andersson, E., Broliden, K. et al., MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017. 10: 35-45. - PubMed
  659. Gherardin, N. A., Souter, M. N. T., Koay, H. F., Mangas, K. M., Seemann, T., Stinear, T. P., Eckle, S. B. G. et al., Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 2018. - PubMed
  660. Dias, J., Boulouis, C., Gorin, J. B., van den Biggelaar, R., Lal, K. G., Gibbs, A., Loh, L. et al., The CD4(-)CD8(-) MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8(+) MAIT cell pool. Proc. Natl. Acad. Sci. U. S. A. 2018. 115: E11513-E11522. - PubMed
  661. Brozova, J., Karlova, I. and Novak, J., Analysis of the Phenotype and Function of the Subpopulations of Mucosal-Associated Invariant T Cells. Scand. J. Immunol. 2016. 84: 245-251. - PubMed
  662. Davanian, H., Gaiser, R. A., Silfverberg, M., Hugerth, L. W., Sobkowiak, M. J., Lu, L., Healy, K. et al., Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int. J. Oral Sci. 2019. 11: 16. - PubMed
  663. Mori, L., Lepore, M. and De Libero, G., The Immunology of CD1- and MR1-Restricted T Cells. Annu. Rev. Immunol. 2016. 34: 479-510. - PubMed
  664. Gherardin, N. A., McCluskey, J., Rossjohn, J. and Godfrey, D. I., The Diverse Family of MR1-Restricted T Cells. J. Immunol. 2018. 201: 2862-2871. - PubMed
  665. Martin, E., Treiner, E., Duban, L., Guerri, L., Laude, H., Toly, C., Premel, V. et al., Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009. 7: e54. - PubMed
  666. Sharma, P. K., Wong, E. B., Napier, R. J., Bishai, W. R., Ndung'u, T., Kasprowicz, V. O., Lewinsohn, D. A. et al., High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology 2015. 145: 443-453. - PubMed
  667. Gold, M. C., Eid, T., Smyk-Pearson, S., Eberling, Y., Swarbrick, G. M., Langley, S. M., Streeter, P. R. et al., Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 2013. 6: 35-44. - PubMed
  668. Leeansyah, E., Ganesh, A., Quigley, M. F., Sonnerborg, A., Andersson, J., Hunt, P. W., Somsouk, M. et al., Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 2013. 121: 1124-1135. - PubMed
  669. Koppejan, H., Jansen, D., Hameetman, M., Thomas, R., Toes, R. E. M. and van Gaalen, F. A., Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res. Ther. 2019. 21: 3. - PubMed
  670. Fernandez, C. S., Amarasena, T., Kelleher, A. D., Rossjohn, J., McCluskey, J., Godfrey, D. I. and Kent, S. J., MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol. Cell Biol. 2015. 93: 177-188. - PubMed
  671. Ussher, J. E., Phalora, P., Cosgrove, C., Hannaway, R. F., Rauch, A., Gunthard, H. F., Goulder, P. et al., Molecular Analyses Define Valpha7.2-Jalpha33+ MAIT Cell Depletion in HIV Infection: A Case-Control Study. Medicine (Baltimore) 2015. 94: e1134. - PubMed
  672. Eckle, S. B., Birkinshaw, R. W., Kostenko, L., Corbett, A. J., McWilliam, H. E., Reantragoon, R., Chen, Z. et al., A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med. 2014. 211: 1585-1600. - PubMed
  673. Kurioka, A., Jahun, A. S., Hannaway, R. F., Walker, L. J., Fergusson, J. R., Sverremark-Ekstrom, E., Corbett, A. J. et al., Shared and Distinct Phenotypes and Functions of Human CD161++ Valpha7.2+ T Cell Subsets. Front. Immunol. 2017. 8: 1031. - PubMed
  674. Ben Youssef, G., Tourret, M., Salou, M., Ghazarian, L., Houdouin, V., Mondot, S., Mburu, Y. et al., Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J. Exp. Med. 2018. 215: 459-479. - PubMed
  675. Koay, H. F., Gherardin, N. A., Xu, C., Seneviratna, R., Zhao, Z., Chen, Z., Fairlie, D. P. et al., Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 2019. 10: 2243. - PubMed
  676. Gherardin, N. A., Keller, A. N., Woolley, R. E., Le Nours, J., Ritchie, D. S., Neeson, P. J., Birkinshaw, R. W. et al., Diversity of T Cells Restricted by the MHC Class I-Related Molecule MR1 Facilitates Differential Antigen Recognition. Immunity 2016. 44: 32-45. - PubMed
  677. Godfrey, D. I., Koay, H. F., McCluskey, J. and Gherardin, N. A., The biology and functional importance of MAIT cells. Nat. Immunol. 2019. 20: 1110-1128. - PubMed
  678. NTFC, NIH Tetramer Core Facility: Human MR1 Tetramer Staining 2016. - PubMed
  679. NTFC, NIH Tetramer Core Facility: Tetramer Preparation - Addition of streptavidin, emory.edu 2010. - PubMed
  680. Dias, J., Leeansyah, E. and Sandberg, J. K., Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc. Natl. Acad. Sci. U. S. A. 2017. 114: E5434-E5443. - PubMed
  681. Loh, L., Gherardin, N. A., Sant, S., Grzelak, L., Crawford, J. C., Bird, N. L., Koay, H. F. et al., Human Mucosal-Associated Invariant T Cells in Older Individuals Display Expanded TCRalphabeta Clonotypes with Potent Antimicrobial Responses. J. Immunol. 2020. 204: 1119-1133. - PubMed
  682. Harriff, M. J., McMurtrey, C., Froyd, C. A., Jin, H., Cansler, M., Null, M., Worley, A., Meermeier, E. W. et al., MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. Sci. Immunol. 2018. 3. - PubMed
  683. Lepore, M., Kalinichenko, A., Calogero, S., Kumar, P., Paleja, B., Schmaler, M., Narang, V. et al., Functionally diverse human T cells recognize non-microbial antigens presented by MR1. Elife 2017. 6. - PubMed
  684. Lissina, A., Ladell, K., Skowera, A., Clement, M., Edwards, E., Seggewiss, R., van den Berg, H. A. et al., Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J. Immunol. Methods 2009. 340: 11-24. - PubMed
  685. Wood, G. S. and Warnke, R., Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J. Histochem. Cytochem. 1981. 29: 1196-1204. - PubMed
  686. Meermeier, E. W., Harriff, M. J., Karamooz, E. and Lewinsohn, D. M., MAIT cells and microbial immunity. Immunol. Cell Biol. 2018. - PubMed
  687. Toubal, A., Nel, I., Lotersztajn, S. and Lehuen, A., Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 2019. 19: 643-657. - PubMed
  688. Yan, J., Allen, S., McDonald, E., Das, I., Mak, J. Y. W., Liu, L., Fairlie, D. P. et al., MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discov. 2020. 10: 124-141. - PubMed
  689. Emma, P., Hui-Fern, K., Melissa, H., Kevin, S., Kirsten, T., Simon, K., Junyun, L. et al., MAIT cells regulate NK cell mediated tumor immunity. Nat. Portfolio 2021. - PubMed
  690. Provine, N. M., Amini, A., Garner, L. C., Spencer, A. J., Dold, C., Hutchings, C., Silva Reyes, L. et al., MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science 2021. 371: 521-526. - PubMed
  691. Constantinides, M. G., Link, V. M., Tamoutounour, S., Wong, A. C., Perez-Chaparro, P. J., Han, S. J., Chen, Y. E. et al., MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 2019. 366. - PubMed
  692. van Wilgenburg, B., Loh, L., Chen, Z., Pediongco, T. J., Wang, H., Shi, M., Zhao, Z. et al., MAIT cells contribute to protection against lethal influenza infection in vivo. Nat. Commun. 2018. 9: 4706. - PubMed
  693. Cho, Y. N., Kee, S. J., Kim, T. J., Jin, H. M., Kim, M. J., Jung, H. J., Park, K. J. et al., Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 2014. 193: 3891-3901. - PubMed
  694. Rahimpour, A., Koay, H. F., Enders, A., Clanchy, R., Eckle, S. B., Meehan, B., Chen, Z. et al., Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 2015. 212: 1095-1108. - PubMed
  695. Novak, J., Dobrovolny, J., Novakova, L. and Kozak, T., The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand. J. Immunol. 2014. 80: 271-275. - PubMed
  696. Kelly, J., Minoda, Y., Meredith, T., Cameron, G., Philipp, M. S., Pellicci, D. G., Corbett, A. J. et al., Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers. Immunol. Cell Biol. 2019. 97: 689-699. - PubMed
  697. Porcelli, S., Yockey, C. E., Brenner, M. B. and Balk, S P., Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J. Exp. Med. 1993. 178: 1-16. - PubMed
  698. Tilloy, F., Treiner, E., Park, S. H., Garcia, C., Lemonnier, F., La Salle, H., Bendelac, A. et al., An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med. 1999. 189: 1907-1921. - PubMed
  699. Koay, H. -. F., Su, S., Amann-Zalcenstein, D., Daley, S. R., Comerford, I., Miosge, L., Whyte, C. E. et al., A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci. Immunol. 2019. https://doi.org/10.1126/sciimmunol.aay6039. - PubMed
  700. Legoux, F., Gilet, J., Procopio, E., Echasserieau, K., Bernardeau, K. and Lantz, O., Molecular mechanisms of lineage decisions in metabolite-specific T cells. Nat. Immunol. 2019. 20: 1244-1255. - PubMed
  701. Wang, H., Kjer-Nielsen, L., Shi, M., D'Souza, C., Pediongco, T. J., Cao, H., Kostenko, L. et al., IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Sci. Immunol. 2019. - PubMed
  702. Lee, M., Lee, E., Han, S. K., Choi, Y. H., Kwon, D.-.I., Choi, H., Lee, K. et al., Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat. Commun. 2020. 11: 4367. - PubMed
  703. Cui, Y., Franciszkiewicz, K., Mburu, Y. K., Mondot, S., Le Bourhis, L., Premel, V., Martin, E. et al., Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest. 2015. 125: 4171-4185. - PubMed
  704. Salou, M., Franciszkiewicz, K. and Lantz, O., MAIT cells in infectious diseases. Curr. Opin. Immunol. 2017. 48: 7-14. - PubMed
  705. Garner, L. C., Klenerman, P. and Provine, N M., Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front. Immunol. 2018. 9: 1478. - PubMed
  706. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. and Love, J C., Single-cell technologies for monitoring immune systems. Nat. Immunol. 2014. 15: 128-135. - PubMed
  707. Chattopadhyay, P. K. and Roederer, M., A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis. Am. J. Transplant. 2015. 15: 1155-1161. - PubMed
  708. Kvistborg, P., Gouttefangeas, C., Aghaeepour, N., Cazaly, A., Chattopadhyay, P. K., Chan, C., Eckl, J. et al., Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 2015. 42: 591-592. - PubMed
  709. Mahnke, Y. D. and Roederer, M., Optimizing a multicolor immunophenotyping assay. Clin. Lab. Med. 2007. 27: 469-485. - PubMed
  710. Newell, E. W. and Davis, M M., Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 2014. 32: 149-157. - PubMed
  711. Bacher, P. and Scheffold, A., Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 2013. - PubMed
  712. Dimitrov, S., Gouttefangeas, C., Besedovsky, L., Jensen, A. T. R., Chandran, P. A., Rusch, E., Businger, R. et al., Activated integrins identify functional antigen-specific CD8(+) T cells within minutes after antigen stimulation. Proc. Natl. Acad. Sci. U. S. A. 2018. 115: E5536-E5545. - PubMed
  713. Kutscher, S., Dembek, C. J., Deckert, S., Russo, C., Korber, N., Bogner, J. R., Geisler, F. et al., Overnight resting of PBMC changes functional signatures of antigen specific T- cell responses: impact for immune monitoring within clinical trials. PLoS One 2013. 8: e76215. - PubMed
  714. Owen, R. E., Sinclair, E., Emu, B., Heitman, J. W., Hirschkorn, D. F., Epling, C. L., Tan, Q. X. et al., Loss of T cell responses following long-term cryopreservation. J. Immunol. Methods 2007. 326(1-2): 93-115. - PubMed
  715. Romer, P. S., Berr, S., Avota, E., Na, S. Y., Battaglia, M., ten Berge, I., Einsele, H. et al., Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood 2011. 118: 6772-6782. - PubMed
  716. Wegner, J., Hackenberg, S., Scholz, C. J., Chuvpilo, S., Tyrsin, D., Matskevich, A. A., Grigoleit, G. U. et al., High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood 2015. 126: 185-194. - PubMed
  717. Zimmermann, J., Radbruch, A. and Chang, H D., A Ca(2+) concentration of 1.5 mM, as present in IMDM but not in RPMI, is critical for maximal response of Th cells to PMA/ionomycin. Eur. J. Immunol. 2015. 45: 1270-1273. - PubMed
  718. Maecker, H. T., Rinfret, A., D'Souza, P., Darden, J., Roig, E., Landry, C., Hayes, P. et al., Standardization of cytokine flow cytometry assays. BMC Immunol. 2005. 6: 13. - PubMed
  719. Reddy, M., Eirikis, E., Davis, C., Davis, H. M. and Prabhakar, U., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J. Immunol. Methods 2004. 293(1-2): 127-142. - PubMed
  720. Dan, J. M., Lindestam Arlehamn, C. S., Weiskopf, D., da Silva Antunes, R., Havenar-Daughton, C., Reiss, S. M., Brigger, M. et al., A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood. J. Immunol. 2016. 197: 983-993. - PubMed
  721. Havenar-Daughton, C., Reiss, S. M., Carnathan, D. G., Wu, J. E., Kendric, K., Torrents de la Pena, A., Kasturi, S. P. et al., Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique. J. Immunol. 2016. 197: 994-1002. - PubMed
  722. Zaunders, J. J., Munier, M. L., Seddiki, N., Pett, S., Ip, S., Bailey, M., Xu, Y. et al., High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J. Immunol. 2009. 183: 2827-2836. - PubMed
  723. Redmond, W. L., Ruby, C. E. and Weinberg, A D., The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol. 2009. 29: 187-201. - PubMed
  724. Chattopadhyay, P. K., Yu, J. and Roederer, M., A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 2005. 11: 1113-1117. - PubMed
  725. Bacher, P., Kniemeyer, O., Schonbrunn, A., Sawitzki, B., Assenmacher, M., Rietschel, E., Steinbach, A. et al., Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol. 2014. 7: 916-928. - PubMed
  726. Bacher, P., Heinrich, F., Stervbo, U., Nienen, M., Vahldieck, M., Iwert, C., Vogt, K. et al., Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell 2016. 167: 1067-78.e16. - PubMed
  727. Wolfl, M., Kuball, J., Eyrich, M., Schlegel, P. G. and Greenberg, P. D., Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A 2008. 73: 1043-1049. - PubMed
  728. Wolfl, M., Kuball, J., Ho, W. Y., Nguyen, H., Manley, T. J., Bleakley, M. and Greenberg, P. D., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007. 110: 201-210. - PubMed
  729. Elias, G., Ogunjimi, B. and Van Tendeloo, V., Activation-induced surface proteins in the identification of antigen-responsive CD4 T cells. Immunol. Lett. 2020. 219: 1-7. - PubMed
  730. Jung, T., Schauer, U., Heusser, C., Neumann, C. and Rieger, C., Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 1993. 159(1-2): 197-207. - PubMed
  731. Brosterhus, H., Brings, S., Leyendeckers, H., Manz, R. A., Miltenyi, S., Radbruch, A., Assenmacher, M. et al., Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol. 1999. 29: 4053-4059. - PubMed
  732. Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S., and Radbruch, A., Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. U. S. A. 1995. 92: 1921-1925. - PubMed
  733. O'Neil-Andersen, N. J. and Lawrence, D. A., Differential modulation of surface and intracellular protein expression by T cells after stimulation in the presence of monensin or brefeldin A. Clin. Diagn. Lab. Immunol. 2002. 9: 243-250. - PubMed
  734. Bacher, P., Schink, C., Teutschbein, J., Kniemeyer, O., Assenmacher, M., Brakhage, A. A. and Scheffold, A., Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 2013. 190: 3967-3976. - PubMed
  735. Bacher, P., Hohnstein, T., Beerbaum, E., Rocker, M., Blango, M. G., Kaufmann, S., Röhmel, J. et al., Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019. 176: 1340-55.e15. - PubMed
  736. Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M., Koup, R. A. et al., Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003. 281(1-2): 65-78. - PubMed
  737. Betts, M. R. and Koup, R A., Detection of T-cell degranulation: CD107a and b. Methods Cell Biol. 2004. 75: 497-512. - PubMed
  738. Dimitrov, S., Benedict, C., Heutling, D., Westermann, J., Born, J. and Lange, T., Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009. 113: 5134-5143. - PubMed
  739. Dimitrov, S., Lange, T. and Born, J., Selective mobilization of cytotoxic leukocytes by epinephrine. J. Immunol. 2010. 184: 503-511. - PubMed
  740. Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A. et al., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020. 181: 1489-501.e15. - PubMed
  741. Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A. et al., Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021. 371. - PubMed
  742. Ansari, A., Arya, R., Sachan, S., Jha, S. N., Kalia, A., Lall, A., Sette, A. et al., Immune Memory in Mild COVID-19 Patients and Unexposed Donors Reveals Persistent T Cell Responses After SARS-CoV-2 Infection. Front. Immunol. 2021. 12: 636768. - PubMed
  743. Bacher, P., Rosati, E., Esser, D., Martini, G. R., Saggau, C., Schiminsky, E., Dargvainiene, J. et al., Low-Avidity CD4(+) T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19. Immunity 2020. 53: 1258-71.e5. - PubMed
  744. Day, C. L., Seth, N. P., Lucas, M., Appel, H., Gauthier, L., Lauer, G. M., Robbins, G. K. et al., Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 2003. 112: 831-842. - PubMed
  745. Miltenyi, S., Muller, W., Weichel, W. and Radbruch, A., High gradient magnetic cell separation with MACS. Cytometry 1990. 11: 231-238. - PubMed
  746. Moon, J. J., Chu, H. H., Pepper, M., McSorley, S. J., Jameson, S. C., Kedl, R. M. and Jenkins, M. K., Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007. 27: 203-213. - PubMed
  747. Obar, J. J., Khanna, K. M. and Lefrancois, L., Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 2008. 28: 859-869. - PubMed
  748. Macey, M. G. Flow Cytometry: Principles and Applications, Humana Press; 2007. - PubMed
  749. Krensky, A. M., The HLA system, antigen processing and presentation. Kidney Int. Suppl. 1997. 58: S2-S7. - PubMed
  750. Kern, F., Faulhaber, N., Frommel, C., Khatamzas, E., Prosch, S., Schonemann, C., Kretzschmar, I. et al., Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur. J. Immunol. 2000. 30: 1676-1682. - PubMed
  751. Maecker, H. T., Dunn, H. S., Suni, M. A., Khatamzas, E., Pitcher, C. J., Bunde, T., Persaud, N. et al., Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J. Immunol. Methods 2001. 255(1-2): 27-40. - PubMed
  752. Eberl, G., Renggli, J., Men, Y., Roggero, M. A., Lopez, J. A. and Corradin, G., Extracellular processing and presentation of a 69-mer synthetic polypetide to MHC class I-restricted T cells. Mol. Immunol. 1999. 36: 103-112. - PubMed
  753. Sherman, L. A., Burke, T. A. and Biggs, J A., Extracellular processing of peptide antigens that bind class I major histocompatibility molecules. J. Exp. Med. 1992. 175: 1221-1226. - PubMed
  754. Alanio, C., Lemaitre, F., Law, H. K., Hasan, M. and Albert, M L., Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood 2010. 115: 3718-3725. - PubMed
  755. Campion, S. L., Brodie, T. M., Fischer, W., Korber, B. T., Rossetti, A., Goonetilleke, N., McMichael, A. J. et al., Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J. Exp. Med. 2014. 211: 1273-1280. - PubMed
  756. Geiger, R., Duhen, T., Lanzavecchia, A. and Sallusto, F., Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 2009. 206: 1525-1534. - PubMed
  757. Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. and Davis, M M., Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 2013. 38: 373-383. - PubMed
  758. Nauerth, M., Stemberger, C., Mohr, F., Weissbrich, B., Schiemann, M., Germeroth, L. and Busch, D. H., Flow cytometry-based TCR-ligand Koff -rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytometry A 2016. 89: 816-825. - PubMed
  759. Ogbe, A., Kronsteiner, B., Skelly, D. T., Pace, M., Brown, A., Adland, E., Adair, K. et al., T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat. Commun. 2021. 12: 2055. - PubMed
  760. Altman, J. D., Moss, P. A., Goulder, P. J., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. et al., Phenotypic analysis of antigen-specific T lymphocytes. Science 1996. 274: 94-96. - PubMed
  761. Rodenko, B., Toebes, M., Hadrup, S. R., van Esch, W. J. E., Molenaar, A. M., Schumacher, T. N. M. and Ovaa, H., Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc. 2006. 1: 1120-1132. - PubMed
  762. Toebes, M., Coccoris, M., Bins, A., Rodenko, B., Gomez, R., Nieuwkoop, N. J., Van De Kasteele, W. et al., Design and use of conditional MHC class I ligands. Nat. Med. 2006. 12: 246-251. - PubMed
  763. Luimstra, J. J., Garstka, M. A., Roex, M. C. J., Redeker, A., Janssen, G. M. C., van Veelen, P. A., Arens, R. et al., A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med. 2018. 215: 1493-1504. - PubMed
  764. Amore, A., Wals, K., Koekoek, E., Hoppes, R., Toebes, M., Schumacher, T. N. M., Rodenko, B. et al., Development of a hypersensitive periodate-cleavable amino acid that is methionine- and disulfide-compatible and its application in MHC exchange reagents for T cell characterisation. Chembiochem. 2013. 14: 123-131. - PubMed
  765. Choo, J. A. L., Thong, S. Y., Yap, J., van Esch, W. J. E., Raida, M., Meijers, R., Lescar, J. et al., Bioorthogonal cleavage and exchange of major histocompatibility complex ligands by employing azobenzene-containing peptides. Angew. Chem. Int. Ed. Engl. 2014. 53: 13390-13394. - PubMed
  766. Saini, S. K., Schuster, H., Ramnarayan, V. R., Rammensee, H. -. G., Stevanovic, S. and Springer, S., Dipeptides catalyze rapid peptide exchange on MHC class I molecules. Proc. Natl. Acad. Sci. U.S.A. 2015. 112: 202-207. - PubMed
  767. Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. and Davis, M M., Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012. 36: 142-152. - PubMed
  768. Newell, E. W., Klein, L. O., Yu, W. and Davis, M M., Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Meth. 2009. 6: 497-499. - PubMed
  769. Newell, E. W., Sigal, N., Nair, N., Kidd, B. A., Greenberg, H. B. and Davis, M M., Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 2013. 31: 623-629. - PubMed
  770. Hadrup, S. R., Bakker, A. H., Shu, C. J., Andersen, R. S., van Veluw, J., Hombrink, P., Castermans, E. et al., Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Meth. 2009. 6: 520-526. - PubMed
  771. Andersen, R. S., Kvistborg, P., Mørch Frøsig, T., Pedersen, N. W., Lyngaa, R., Bakker, A. H., Shu, C. J. et al., Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat. Protoc. 2012. 7: 891-902. - PubMed
  772. Bentzen, A. K., Marquard, A. M., Lyngaa, R., Saini, S. K., Ramskov, S., Donia, M., Such, L. et al., Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 2016. 34: 1037-1045. - PubMed
  773. Dolton, G., Zervoudi, E., Rius, C., Wall, A., Thomas, H. L., Fuller, A., Yeo, L. et al., Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front. Immunol. 2018. 9: 1378. - PubMed
  774. Zhang, S.-Q., Ma, K.-.Y., Schonnesen, A. A., Zhang, M., He, C., Sun, E., Williams, C. M. et al., High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 2018. 36: 1-9. - PubMed
  775. Garboczi, D. N., Hung, D. T. and Wiley, D C., HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. U. S. A. 1992. 89: 3429-3433. - PubMed
  776. Gangaev, A., Ketelaars, S. L. C., Patiwael, S., Dopler, A., Isaeva, O. I., Hoefakker, K., De Biasi, S. et al., Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features. Nat. Commun. 2021. 12: 2593. - PubMed
  777. Sidney, J., Peters, B., Frahm, N., Brander, C. and Sette, A., HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008. 9: 1-15. - PubMed
  778. Dhanda, S. K., Vaughan, K., Schulten, V., Grifoni, A., Weiskopf, D., Sidney, J., Peters, B. et al., Development of a novel clustering tool for linear peptide sequences. Immunology 2018. 155: 331-345. - PubMed
  779. Kvistborg, P., Philips, D., Kelderman, S., Hageman, L., Ottensmeier, C., Joseph-Pietras, D., Welters, M. J. P. et al., Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 2014. 254: 254ra126. - PubMed
  780. Kuball, J., Hauptrock, B., Malina, V., Antunes, E., Voss, R. -. H., Wolfl, M., Strong, R. et al., Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J. Exp. Med. 2009. 206: 463-475. - PubMed
  781. Kvistborg, P., Shu, C. J., Heemskerk, B., Fankhauser, M., Thrue, C. A., Toebes, M., van Rooij, N. et al., TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 2012. 1: 409-418. - PubMed
  782. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W. et al., Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015. 348: 124-128. - PubMed
  783. van Rooij, N., van Buuren, M. M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., van Dijk, L. J. A. et al., Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 2013. 31: e439-42. - PubMed
  784. Schneck, J. P., Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol. Invest. 2000. 29: 163-169. - PubMed
  785. Selin, L. K., Vergilis, K., Welsh, R. M. and Nahill, S. R., Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J. Exp. Med. 1996. 183: 2489-2499. - PubMed
  786. Martinez, R. J., Andargachew, R., Martinez, H. A. and Evavold, B. D., Low-affinity CD4+ T cells are major responders in the primary immune response. Nat. Commun. 2016. 7, 13848. - PubMed
  787. Xiao, Z., Mescher, M. F. and Jameson, S. C., Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J. Exp. Med. 2007. 204: 2667-2677. - PubMed
  788. Bakker, A. H. and Schumacher, T. N., MHC multimer technology: current status and future prospects. Curr. Opin. Immunol. 2005. 17: 428-433. - PubMed
  789. McMichael, A. J. and O'Callaghan, C. A., A new look at T cells. J. Exp. Med. 1998. 187: 1367-1371. - PubMed
  790. Effenberger, M., Stengl, A., Schober, K., Gerget, M., Kampick, M., Muller, T. R., Schumacher, D. et al., FLEXamers: A Double Tag for Universal Generation of Versatile Peptide-MHC Multimers. J. Immunol. 2019. 202: 2164-2171. - PubMed
  791. Ogg, G. S., King, A. S., Dunbar, P. R. and McMichael, A. J., Isolation of HIV-1-specific cytotoxic T lymphocytes using human leukocyte antigen-coated beads. AIDS 1999. 13: 1991-1993. - PubMed
  792. Luxembourg, A. T., Borrow, P., Teyton, L., Brunmark, A. B., Peterson, P. A. and Jackson, M. R., Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy. Nat. Biotechnol. 1998. 16: 281-285. - PubMed
  793. Xu, X. N., Purbhoo, M. A., Chen, N., Mongkolsapaya, J., Cox, J. H., Meier, U. C., Tafuro, S. et al., A novel approach to antigen-specific deletion of CTL with minimal cellular activation using alpha3 domain mutants of MHC class I/peptide complex. Immunity 2001. 14: 591-602. - PubMed
  794. Whelan, J. A., Dunbar, P. R., Price, D. A., Purbhoo, M. A., Lechner, F., Ogg, G. S., Griffiths, G. et al., Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J. Immunol. 1999. 163: 4342-4348. - PubMed
  795. Daniels, M. A. and Jameson, S. C., Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 2000. 191: 335-346. - PubMed
  796. Knabel, M., Franz, T. J., Schiemann, M., Wulf, A., Villmow, B., Schmidt, B., Bernhard, H. et al., Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat. Med. 2002. 8: 631-637. - PubMed
  797. Neuenhahn, M., Albrecht, J., Odendahl, M., Schlott, F., Dossinger, G., Schiemann, M., Lakshmipathi, S. et al., Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia 2017. 31: 2161-2171. - PubMed
  798. Nauerth, M., Weissbrich, B., Knall, R., Franz, T., Dossinger, G., Bet, J., Paszkiewicz, P. J. et al., TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci. Transl. Med. 5, 192ra187 (2013). - PubMed
  799. Stemberger, C., Dreher, S., Tschulik, C., Piossek, C., Bet, J., Yamamoto, T. N., Schiemann, M. et al., Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PloS One 2012. 7: e35798. - PubMed
  800. Davis, D. M., Reyburn, H. T., Pazmany, L., Chiu, I., Mandelboim, O. and Strominger, J. L., Impaired spontaneous endocytosis of HLA-G. Eur. J. Immunol. 1997. 27: 2714-2719. - PubMed
  801. Boutet, S. C., Walter, D., Stubbington, M. J. T., Pfeiffer, K. A., Lee, J. Y., Taylor, S. E. B., Montesclaros, L. et al., Scalable and comprehensive characterization of antigen-specific CD8 T cells using multi-omics single cell analysis. J. Immunol. 2019. 202: 131.134-131.134. - PubMed
  802. Lund-Johansen, F., Bjerknes, R. and Laerum, O. D., Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry 1990. 11: 610-616. - PubMed
  803. Vollers, S. S. and Stern, L. J., Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008. 123: 305-313. - PubMed
  804. James, E. A., LaFond, R., Durinovic-Bello, I. and Kwok, W., Visualizing antigen specific CD4+ T cells using MHC class II tetramers. J. Vis. Exp. 2009. - PubMed
  805. Scheffold, A., Busch, D. H. and Kern, F. Detection of Antigen-Specific T-Cells using Major Histocompatibility Complex Multimers or Functional Parameters. Cellular diagnostics. Karger Publishers, 2009, pp 476-502. - PubMed
  806. Dooms, H. and Abbas, A. K., Control of CD4+ T-cell memory by cytokines and costimulators. Immunol. Rev. 2006. 211: 23-38. - PubMed
  807. Gallo, O., Locatello, L. G., Mazzoni, A., Novelli, L. and Annunziato, F., The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021. 14: 305-316. - PubMed
  808. Mazzoni, A., Maggi, L., Capone, M., Spinicci, M., Salvati, L., Colao, M. G., Vanni, A. et al., Cell-mediated and humoral adaptive immune responses to SARS-CoV-2 are lower in asymptomatic than symptomatic COVID-19 patients. Eur. J. Immunol. 2020. 50: 2013-2024. - PubMed
  809. Moratto, D., Giacomelli, M., Chiarini, M., Savarè, L., Saccani, B., Motta, M., Timpano, S. et al., Immune response in children with COVID-19 is characterized by lower levels of T-cell activation than infected adults. Eur. J. Immunol. 2020. 50: 1412-1414 - PubMed
  810. Oja, A. E., Saris, A., Ghandour, C. A., Kragten, N. A. M., Hogema, B. M., Nossent, E. J., Heunks, L. M. A. et al.. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur. J. Immunol. 2020. 50: 1998-2012. - PubMed
  811. Mazzoni, A., Maggi, L., Capone, M., Vanni, A., Spinicci, M., Salvati, L., Tekle Kiros, S. et al.. Heterogeneous magnitude of immunological memory to SARS-CoV-2 in recovered individuals. Clin. Transl. Immunol. 2021. 10: e1281. - PubMed
  812. Mazzoni, A., Di Lauria, N., Maggi, L., Salvati, L., Vanni, A., Capone, M., Lamacchia, G. et al.. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in recovered COVID-19 subjects. J. Clin. Invest. 2021: 149150. - PubMed
  813. Pircher, H., Burki, K., Lang, R., Hengartner, H. and Zinkernagel, R. M., Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 1989. 342: 559-561. - PubMed
  814. Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J. and Carbone, F. R., T cell receptor antagonist peptides induce positive selection. Cell 1994. 76: 17-27. - PubMed
  815. Oxenius, A., Bachmann, M. F., Zinkernagel, R. M. and Hengartner, H., Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 1998. 28: 390-400. - PubMed
  816. Barnden, M. J., Allison, J., Heath, W. R. and Carbone, F. R., Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 1998. 76: 34-40. - PubMed
  817. Murphy, K. M., Heimberger, A. B. and Loh, D. Y., Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 1990. 250: 1720-1723. - PubMed
  818. Kagi, D., Odermatt, B., Ohashi, P. S., Zinkernagel, R. M. and Hengartner, H., Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J. Exp. Med. 1996. 183: 2143-2152. - PubMed
  819. Bettelli, E., Pagany, M., Weiner, H. L., Linington, C., Sobel, R. A. and Kuchroo, V. K., Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 2003. 197: 1073-1081. - PubMed
  820. Buchholz, V. R., Flossdorf, M., Hensel, I., Kretschmer, L., Weissbrich, B., Graf, P., Verschoor, A. et al., Disparate individual fates compose robust CD8+ T cell immunity. Science 2013. 340: 630-635. - PubMed
  821. Jenkins, M. K. and Moon, J. J., The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 2012. 188: 4135-4140. - PubMed
  822. Buchholz, V. R., Schumacher, T. N. and Busch, D. H., T Cell Fate at the Single-Cell Level. Annu. Rev. Immunol. 2016. 34: 65-92. - PubMed
  823. Stemberger, C., Huster, K. M., Koffler, M., Anderl, F., Schiemann, M., Wagner, H. and Busch, D. H., A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007. 27: 985-997. - PubMed
  824. Baumjohann, D. and Ansel, K. M., Tracking early T follicular helper cell differentiation in vivo. Methods Mol. Biol. 2015. 1291: 27-38. - PubMed
  825. Paus, D., Phan, T. G., Chan, T. D., Gardam, S., Basten, A. and Brink, R., Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 2006. 203: 1081-1091. - PubMed
  826. Allen, C. D., Okada, T., Tang, H. L. and Cyster, J. G., Imaging of germinal center selection events during affinity maturation. Science 2007. 315: 528-531. - PubMed
  827. Boesch, M., Cosma, A. and Sopper, S., Flow Cytometry: To Dump or Not To Dump. J. Immunol. 2018. 201: 1813. - PubMed
  828. Mueller, S. N., Gebhardt, T., Carbone, F. R. and Heath, W R., Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 2013. 31: 137-161. - PubMed
  829. Masopust, D. and Schenkel, J M., The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 2013. 13: 309-320. - PubMed
  830. Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., Slansky, J. et al., Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998. 8: 177-187. - PubMed
  831. Masopust, D., Vezys, V., Marzo, A. L. and Lefrancois, L., Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001. 291: 2413-2417. - PubMed
  832. Barber, D. L., Wherry, E. J. and Ahmed, R., Cutting edge: rapid in vivo killing by memory CD8 T cells. J. Immunol. 2003. 171: 27-31. - PubMed
  833. Brunner, K. T., Mauel, J., Cerottini, J. C. and Chapuis, B., Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 1968. 14: 181-196. - PubMed
  834. Nagata, S. and Golstein, P., The Fas death factor. Science 1995. 267: 1449-1456. - PubMed
  835. Lopez, J. A., Susanto, O., Jenkins, M. R., Lukoyanova, N., Sutton, V. R., Law, R. H. P., Johnston, A. et al., Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 2013. 121: 2659-2668. - PubMed
  836. Liu, L., Chahroudi, A., Silvestri, G., Wernett, M. E., Kaiser, W. J., Safrit, J. T., Komoriya, A. et al., Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat. Med. 2002. 8: 185-189. - PubMed
  837. Bedner, E., Smolewski, P., Amstad, P. and Darzynkiewicz, Z., Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Res. 2000. 259: 308-313. - PubMed
  838. Amstad, P. A., Yu, G., Johnson, G. L., Lee, B. W., Dhawan, S. and Phelps, D J., Detection of caspase activation in situ by fluorochrome-labeled caspase inhibitors. Biotechniques 2001. 31: 608-10, 612, 614, passim. - PubMed
  839. Sheehy, M. E., McDermott, A. B., Furlan, S. N., Klenerman, P. and Nixon, D F., A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J. Immunol. Methods 2001. 249: 99-110. - PubMed
  840. Michonneau, D., Sagoo, P., Breart, B., Garcia, Z., Celli, S. and Bousso, P., The PD-1 Axis Enforces an Anatomical Segregation of CTL Activity that Creates Tumor Niches after Allogeneic Hematopoietic Stem Cell Transplantation. Immunity 2016. 44: 143-154. - PubMed
  841. Aichele, P., Brduscha-Riem, K., Oehen, S., Odermatt, B., Zinkernagel, R. M., Hengartner, H. and Pircher, H., Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 1997. 6: 519-529. - PubMed
  842. Coles, R. M., Mueller, S. N., Heath, W. R., Carbone, F. R. and Brooks, A G., Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol. 2002. 168: 834-838. - PubMed
  843. Quah, B. J., Wijesundara, D. K., Ranasinghe, C. and Parish, C R., Fluorescent target array killing assay: a multiplex cytotoxic T-cell assay to measure detailed T-cell antigen specificity and avidity in vivo. Cytometry A 2012. 81: 679-690. - PubMed
  844. Kotturi, M. F., Scott, I., Wolfe, T., Peters, B., Sidney, J., Cheroutre, H., von Herrath, M. G. et al., Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J. Immunol. 2008. 181: 2124-2133. - PubMed
  845. Ljunggren, H.-G., Stam, N. J., Öhlén, C., Neefjes, J. J., Höglund, P., Heemels, M. -. T., Bastin, J. et al., Empty MHC class I molecules come out in the cold. Nature 1990. 346: 476-480. - PubMed
  846. Takeuchi, A. and Saito, T., CD4 CTL, a Cytotoxic Subset of CD4+ T Cells, Their Differentiation and Function. Front. Immunol. 2017. 8: 194. - PubMed
  847. Muraro, E., Merlo, A., Martorelli, D., Cangemi, M., Santa, S. D., Dolcetti, R. and Rosato, A., Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells. Front. Immunol. 2017. 8: 197. - PubMed
  848. Garbi, N., Arnold, B., Gordon, S., Hämmerling, G. J. and Ganss, R., CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J. Immunol. 2004. 172: 5861-5869. - PubMed
  849. Hochweller, K., Striegler, J., Hämmerling, G. J. and Garbi, N., A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur. J. Immunol. 2008. 38: 2776-2783. - PubMed
  850. Santarlasci, V., Maggi, L., Capone, M., Querci, V., Beltrame, L., Cavalieri, D., D'Aiuto, E. et al., Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity 2012. 36: 201-14. - PubMed
  851. Santarlasci, V., Mazzoni, A., Capone, M., Rossi, M. C., Maggi, L., Montaini, G., Rossettini, B. et al., Musculin inhibits human T-helper 17 cell response to interleukin 2 by controlling STAT5B activity. Eur. J. Immunol. 2017. 47: 1427-1442. - PubMed
  852. Nunes-Santos, C. J., Uzel, G. and Rosenzweig, S D., PI3K pathway defects leading to immunodeficiency and immune dysregulation. J. Allergy Clin. Immunol. 2019. 143: 1676-1687. - PubMed
  853. Annunziato, F., Romagnani, C. and Romagnani, S., The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015. 135: 626-35. - PubMed
  854. Brugnolo, F., Sampognaro, S., Liotta, F., Cosmi, L., Annunziato, F., Manuelli, C., Campi, P. et al.. The novel synthetic immune response modifier R-848 (Resiquimod) shifts human allergen-specific CD4+ TH2 lymphocytes into IFN-gamma-producing cells. J. Allergy Clin. Immunol. 2003. 111: 380-388. - PubMed
  855. Cosmi, L., Maggi, L., Santarlasci, V., Capone, M., Cardilicchia, E., Frosali, F., Querci, V. et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol. 2010. 125: 222-30.e1-4. - PubMed
  856. Mazzoni, A., Maggi, L., Liotta, F., Cosmi, L. and Annunziato, F., Biological and clinical significance of T helper 17 cell plasticity. Immunology 2019. 158: 287-295. - PubMed
  857. Becattini, S., Latorre, D., Mele, F., Foglierini, M., De Gregorio, C., Cassotta, A., Fernandez, B. et al., T cell immunity. Functional heterogeneity of human memory CD4⁺ T cell clones primed by pathogens or vaccines. Science 2015. 347: 400-6. - PubMed
  858. Mazzoni, A., Santarlasci, V., Maggi, L., Capone, M., Rossi, M. C., Querci, V., De Palma, R. et al., Demethylation of the RORC2 and IL17A in human CD4+ T lymphocytes defines Th17 origin of nonclassic Th1 cells. J. Immunol. 2015. 194: 3116-26. - PubMed
  859. Bickham, K., Münz, C., Tsang, M. L., Larsson, M., Fonteneau, J. F., Bhardwaj, N. and Steinman, R., EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J. Clin. Invest. 2001. 107: 121-30. - PubMed
  860. de Jager, W., te Velthuis, H., Prakken, B. J., Kuis, W. and Rijkers, G T., Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin. Diagn. Lab. Immunol. 2003. 10: 133-9. - PubMed
  861. Vignali, D. A., Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 2000. 21(1-2): 243-55. - PubMed
  862. Gomaa, A. and Boye, J., Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 2015. 175: 585-92. - PubMed
  863. Antal-Szalmás, P., Nagy B., Jr, Debreceni, I. B. and Kappelmayer, J., Measurement of Soluble Biomarkers by Flow Cytometry. EJIFCC 2013. 23: 135-42. - PubMed
  864. Medeiros, N. I. and Gomes, J A S., Cytometric Bead Array (CBA) for Measuring Cytokine Levels in Chagas Disease Patients. Methods Mol. Biol. 2019. 1955: 309-314. - PubMed
  865. Alves, L. C. V., Carvalho, M. G., Nunes, F. F. C., Reis, E. A., Ferreira, G. A., Calderaro, D. C., Carvalho, J. S. et al., Evaluation of potential biomarkers for the diagnosis and monitoring of Systemic Lupus Erythematosus using the Cytometric Beads Array (CBA). Clin. Chim. Acta 2019. 499: 16-23. - PubMed
  866. Laffer, B., Bauer, D., Wasmuth, S., Busch, M., Jalilvand, T. V., Thanos, S., Meyer Zu Hörste, G. et al.. Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Front. Cell Neurosci. 2019. 13: 430. - PubMed
  867. Maggi, L., Cimaz, R., Capone, M., Santarlasci, V., Rossi, M. C., Mazzoni, A., Montaini, G. et al., Immunosuppressive Activity of Abatacept on Circulating T Helper Lymphocytes from Juvenile Idiopathic Arthritis Patients. Int. Arch. Allergy Immunol. 2016. 171: 45-53. - PubMed
  868. Maggi, L., Montaini, G., Mazzoni, A., Rossettini, B., Capone, M., Rossi, M. C., Santarlasci, V. et al., Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production. J. Allergy Clin. Immunol. 2017. 139: 964-976.e4. - PubMed
  869. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T. and Sakaguchi, S., CTLA-4 control over Foxp3(+) regulatory T cell function. Science 2008. 322: 271-275. - PubMed
  870. Cammarata, I., Martire, C., Citro, A., Raimondo, D., Fruci, D., Melaiu, O., D'Oria, V. et al., Counter-regulation of regulatory T cells by autoreactive CD8(+) T cells in rheumatoid arthritis. J. Autoimmun. 2019. 99: 81-97. - PubMed
  871. Walker, L. S., Regulatory T cells overturned: the effectors fight back. Immunology 2009. 126: 466-474. - PubMed
  872. Wing, J. B., Kitagawa, Y., Locci, M., Hume, H., Tay, C., Morita, T., Kidani, Y. et al., A distinct subpopulation of CD25(-) T-follicular regulatory cells localizes in the germinal centers. Proc. Natl. Acad. Sci. U. S. A. 2017. 114: E6400-E6409. - PubMed
  873. Roederer, M., Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A 2011. 79: 95-101. - PubMed
  874. Grossman, W. J., Verbsky, J. W., Barchet, W., Colonna, M., Atkinson, J. P. and Ley, T. J., Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004. 21: 589-601. - PubMed
  875. Koristka, S., Cartellieri, M., Arndt, C., Feldmann, A., Topfer, K., Michalk, I., Temme, A. et al., Cytotoxic response of human regulatory T cells upon T-cell receptor-mediated activation: a matter of purity. Blood Cancer J. 2014. 4: e199. - PubMed
  876. Schubert, D., Bode, C., Kenefeck, R., Hou, T. Z., Wing, J. B., Kennedy, A., Bulashevska, A. et al., Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 2014. - PubMed
  877. Simonetti, S., Natalini, A., Folgori, A., Capone, S., Nicosia, A., Santoni, A., Di Rosa, F. et al., Antigen-specific CD8 T cells in cell cycle circulate in the blood after vaccination. Scand. J. Immunol. 2019. 89: e12735. - PubMed
  878. Muñoz-Ruiz, M., Pujol-Autonell, I., Rhys, H., Long, H. M., Greco, M., Peakman, M., Tree, T. et al., Tracking immunodynamics by identification of S-G2/M-phase T cells in human peripheral blood. J. Autoimmun. 2020. 112: 102466. - PubMed
  879. Simonetti, S., Natalini, A., Peruzzi, G., Nicosia, A., Folgori, A., Capone, S., Santoni, A. et al., A DNA/Ki67-Based Flow Cytometry Assay for Cell Cycle Analysis of Antigen-Specific CD8 T Cells in Vaccinated Mice. J. Vis. Exp. 2021. https://doi.org/10.3791/61867. - PubMed
  880. Laing, A. G., Lorenc, A., Del Molino Del Barrio, I., Das, A., Fish, M., Monin, L., Muñoz-Ruiz, M. et al., A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 2020. 26: 1623-1635. - PubMed
  881. Abdul-Jawad, S., Baù, L., Alaguthurai, T., Del Molino Del Barrio, I., Laing, A. G., Hayday, T. S., Monin, L. et al., Acute immune signatures and their legacies in severe acute respiratory syndrome coronavirus-2 infected cancer patients. Cancer Cell 2021. 39: 257-275. - PubMed
  882. Zaunders, J. J., Early proliferation of CCR5+ CD38+++ antigen-specific CD4+ Th1 effector cells during primary HIV-1 infection. Blood 2005. 106: 1660-1667. - PubMed
  883. van Aalderen, M. C., Remmerswaal, E. B., Verstegen, N. J., Hombrink, P., ten Brinke, A., Pircher, H., Kootstra, N. A. et al., Infection history determines the differentiation state of human CD8+ T cells. J. Virol. 2015. 89: 5110-5123. - PubMed
  884. Borghans, J. A. and de Boer, R J., Quantification of T-cell dynamics: from telomeres to DNA labeling. Immunol. Rev. 2007. 216: 35-47. - PubMed
  885. Akondy, R. S., Fitch, M., Edupuganti, S., Yang, S., Kissick, H. T., Li, K. W., Youngblood, B. A. et al., Origin and differentiation of human memory CD8 T cells after vaccination. Nature 2017. 552: 362-367. - PubMed
  886. Di Rosa, F., Cossarizza, A. and Hayday, A C., To Ki or Not to Ki: Re-Evaluating the Use and Potentials of Ki-67 for T Cell Analysis. Front. Immunol. 2021. 12. - PubMed
  887. Wilson, A., Murphy, M. J., Oskarsson, T., Kaloulis, K., Bettess, M. D., Oser, G. M., Pasche, A.-.C. et al., c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004. 18: 2747-2763. - PubMed
  888. Wooldridge, L., van den Berg, H. A., Glick, M., Gostick, E., Laugel, B., Hutchinson, S. L., Milicic, A. et al., Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J. Biol. Chem. 2005. 280: 27491-27501. - PubMed
  889. Skowera, A., Ladell, K., McLaren, J. E., Dolton, G., Matthews, K. K., Gostick, E., Kronenberg-Versteeg, D. et al., β-Cell-Specific CD8 T Cell Phenotype in Type 1 Diabetes Reflects Chronic Autoantigen Exposure. Diabetes 2015. 64: 916-925. - PubMed
  890. Tungatt, K., Bianchi, V., Crowther, M. D., Powell, W. E., Schauenburg, A. J., Trimby, A., Donia, M. et al., Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs. J. Immunol. 2015. 194: 463-474. - PubMed
  891. Anderson, K. C., Bates, M. P., Slaughenhoupt, B. L., Pinkus, G. S., Schlossman, S. F. and Nadler, L. M., Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 1984. 63: 1424-1433. - PubMed
  892. Stashenko, P., Nadler, L. M., Hardy, R. and Schlossman, S. F., Characterization of a human B lymphocyte-specific antigen. J. Immunol. 1980. 125: 1678-1685. - PubMed
  893. LeBien, T. W. and Tedder, T. F., B lymphocytes: how they develop and function. Blood 2008. 112: 1570-1580. - PubMed
  894. Sims, G. P., Ettinger, R., Shirota, Y., Yarboro, C. H., Illei, G. G. and Lipsky, P. E., Identification and characterization of circulating human transitional B cells. Blood 2005. 105: 4390-4398. - PubMed
  895. Klein, U., Rajewsky, K. and Kuppers, R., Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 1998. 188: 1679-1689. - PubMed
  896. Kuppers, R., Klein, U., Hansmann, M. L. and Rajewsky, K., Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 1999. 341: 1520-1529. - PubMed
  897. Lettau, M., Wiedemann, A., Schrezenmeier, E. V., Giesecke-Thiel, C. and Dorner, T., Human CD27+ memory B cells colonize a superficial follicular zone in the palatine tonsils with similarities to the spleen. A multicolor immunofluorescence study of lymphoid tissue. PLoS One 2020. 15: e0229778. - PubMed
  898. Agematsu, K., Hokibara, S., Nagumo, H. and Komiyama, A., CD27: a memory B-cell marker. Immunol. Today 2000. 21: 204-206. - PubMed
  899. Agematsu, K., Nagumo, H., Yang, F. C., Nakazawa, T., Fukushima, K., Ito, S., Sugita, K. et al., B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur. J. Immunol. 1997. 27: 2073-2079. - PubMed
  900. Odendahl, M., Jacobi, A., Hansen, A., Feist, E., Hiepe, F., Burmester, G. R., Lipsky, P. E. et al., Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 2000. 165: 5970-5979. - PubMed
  901. Mei, H. E., Wirries, I., Frolich, D., Brisslert, M., Giesecke, C., Grun, J. R., Alexander, T. et al., A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 2015. 125: 1739-1748. - PubMed
  902. Wiedemann, A., Lettau, M., Wirries, I., Jungmann, A., Salhab, A., Gasparoni, G., Mei, H. E. et al., Human IgA-Expressing Bone Marrow Plasma Cells Characteristically Upregulate Programmed Cell Death Protein-1 Upon B Cell Receptor Stimulation. Front. Immunol. 2020. 11: 628923. - PubMed
  903. Pascual, V., Liu, Y. J., Magalski, A., de Bouteiller, O., Banchereau, J. and Capra, J. D., Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 1994. 180: 329-339. - PubMed
  904. Kikutani, H., Suemura, M., Owaki, H., Nakamura, H., Sato, R., Yamasaki, K., Barsumian, E. L. et al., Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching. J. Exp. Med. 1986. 164: 1455-1469. - PubMed
  905. Clark, E. A. and Lane, P. J., Regulation of human B-cell activation and adhesion. Annu. Rev. Immunol. 1991. 9: 97-127. - PubMed
  906. Wu, Y. C., Kipling, D. and Dunn-Walters, D. K., The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front. Immunol. 2011. 2: 81. - PubMed
  907. Wei, C., Anolik, J., Cappione, A., Zheng, B., Pugh-Bernard, A., Brooks, J., Lee, E. H. et al., A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 2007. 178: 6624-6633. - PubMed
  908. Jacobi, A. M., Reiter, K., Mackay, M., Aranow, C., Hiepe, F., Radbruch, A., Hansen, A. et al., Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 2008. 58: 1762-1773. - PubMed
  909. Jenks, S. A., Cashman, K. S., Zumaquero, E., Marigorta, U. M., Patel, A. V., Wang, X., Tomar, D. et al., Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018. 49: 725-739.e726. - PubMed
  910. Rincon-Arevalo, H., Wiedemann, A., Stefanski, A. L., Lettau, M., Szelinski, F., Fuchs, S., Frei, A. P. et al., Deep Phenotyping of CD11c(+) B Cells in Systemic Autoimmunity and Controls. Front. Immunol. 2021. 12: 635615. - PubMed
  911. Wehr, C., Eibel, H., Masilamani, M., Illges, H., Schlesier, M., Peter, H. H. and Warnatz, K., A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 2004. 113: 161-171. - PubMed
  912. Tedder, T. F., Zhou, L. J. and Engel, P., The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today 1994. 15: 437-442. - PubMed
  913. Jacobi, A. M. and Dorner, T., B-cell-directed therapy in patients with connective tissue diseases. Dtsch. Med. Wochenschr. 2012. 137: 1755-1757. - PubMed
  914. Polikowsky, H. G., Wogsland, C. E., Diggins, K. E., Huse, K. and Irish, J. M., Cutting Edge: Redox Signaling Hypersensitivity Distinguishes Human Germinal Center B Cells. J. Immunol. 2015. 195: 1364-1367. - PubMed
  915. Carrion, C., Guerin, E., Gachard, N., le Guyader, A., Giraut, S. and Feuillard, J., Adult Bone Marrow Three-Dimensional Phenotypic Landscape of B-Cell Differentiation. Cytometry B Clin. Cytom. 2019. 96: 30-38. - PubMed
  916. Bernasconi, N. L., Traggiai, E. and Lanzavecchia, A., Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002. 298: 2199-202. - PubMed
  917. Giesecke, C., Meyer, T., Durek, P., Maul, J., Preiss, J., Jacobs, J. F. M., Thiel, A. et al., Simultaneous Presence of Non- and Highly Mutated Keyhole Limpet Hemocyanin (KLH)-Specific Plasmablasts Early after Primary KLH Immunization Suggests Cross-Reactive Memory B Cell Activation. J. Immunol. 2018. 200: 3981-92. - PubMed
  918. Vergroesen, R. D., Slot, L. M., Hafkenscheid, L., Koning, M. T., van der Voort, E. I. H., Grooff, C. A., Zervakis, G. et al., B-cell receptor sequencing of anti-citrullinated protein antibody (ACPA) IgG-expressing B cells indicates a selective advantage for the introduction of N-glycosylation sites during somatic hypermutation. Ann. Rheum. Dis. 2018. 77: 956-8. - PubMed
  919. Suwannalai, P., Scherer, H. U., van der Woude, D., Ioan-Facsinay, A., Jol-van der Zijde, C. M., van Tol, M. J., Drijfhout, J. W. et al., Anti-citrullinated protein antibodies have a low avidity compared with antibodies against recall antigens. Ann. Rheum. Dis. 2011. 70: 373-9. - PubMed
  920. Rincon-Arevalo, H., Choi, M., Stefanski, A.-.L., Halleck, F., Weber, U., Szelinski, F., Jahrsdörfer, B. et al., Impaired antigen-specific memory B cell and plasma cell responses including lack of specific IgG upon SARS-CoV-2 BNT162b2 vaccination among Kidney Transplant and Dialysis patients. medRxiv 2021. 2021.04.15.21255550. - PubMed
  921. Liao, H. Y., Tao, L., Zhao, J., Qin, J., Zeng, G. C., Cai, S. W., Li, Y., et al., Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients. Sci. Rep. 2016. 6: 20481. - PubMed
  922. Ellebedy, A. H., Jackson, K. J., Kissick, H. T., Nakaya, H. I., Davis, C. W., Roskin, K. M., McElroy, A. K. et al., Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat. Immunol. 2016. 17: 1226-34. - PubMed
  923. Murugan, R., Buchauer, L., Triller, G., Kreschel, C., Costa, G., Pidelaserra Marti, G., Imkeller, K. et al., Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci. Immunol. 2018. 3. - PubMed
  924. Germar, K., Fehres, C. M., Scherer, H. U., van Uden, N., Pollastro, S., Yeremenko, N., Hansson, M. et al., Generation and characterization of anti-citrullinated protein antibody-producing B-cell clones from rheumatoid arthritis patients. Arthritis Rheumatol. (Hoboken, NJ) 2018. - PubMed
  925. Kwakkenbos, M. J., Diehl, S. A., Yasuda, E., Bakker, A. Q., van Geelen, C. M., Lukens, M. V., van Bleek, G. M. et al., Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 2010. 16: 123-8. - PubMed
  926. Giesecke, C., Frolich, D., Reiter, K., Mei, H. E., Wirries, I., Kuhly, R., Killig, M. et al., Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells. J. Immunol. 2014. 192: 3091-100. - PubMed
  927. Kerkman, P. F., Kempers, A. C., van der Voort, E. I., van Oosterhout, M., Huizinga, T. W., Toes, R. E. and Scherer, H. U., Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Annals Rheum. Dis. 2016. 75: 2201-7. - PubMed
  928. Kerkman, P. F., Rombouts, Y., van der Voort, E. I., Trouw, L. A., Huizinga, T. W., Toes, R. E., Scherer, H. U. et al., Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Annals Rheum. Dis. 2013. 72: 1259-63. - PubMed
  929. Hansen, A., Reiter, K., Dorner, T. and Pruss, A., Cryopreserved human B cells as an alternative source for single cell mRNA analysis. Cell Tissue Bank 2005. 6: 299-308. - PubMed
  930. Townsend, S. E., Goodnow, C. C. and Cornall, R J., Single epitope multiple staining to detect ultralow frequency B cells. J. Immunol. Methods 2001. 249(1-2): 137-46. - PubMed
  931. Brooks, J. F., Liu, X., Davies, J. M., Wells, J. W. and Steptoe, R J., Tetramer-based identification of naive antigen-specific B cells within a polyclonal repertoire. Eur. J. Immunol. 2018. 48: 1251-4. - PubMed
  932. Kerkman, P. F., Fabre, E., van der Voort, E. I., Zaldumbide, A., Rombouts, Y., Rispens, T., Wolbink, G. et al., Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Annals Rheum. Dis. 2016. 75: 1170-6. - PubMed
  933. Cornec, D., Berti, A., Hummel, A., Peikert, T., Pers, J. O. and Specks, U., Identification and phenotyping of circulating autoreactive proteinase 3-specific B cells in patients with PR3-ANCA associated vasculitis and healthy controls. J. Autoimmun. 2017. 84: 122-31. - PubMed
  934. Kissel, T., Reijm, S., Slot, L. M., Cavallari, M., Wortel, C. M., Vergroesen, R. D., Stoeken-Rijsbergen, G. et al., Antibodies and B cells recognising citrullinated proteins display a broad cross-reactivity towards other post-translational modifications. Ann. Rheum. Dis. 2020. 79: 472-80. - PubMed
  935. Frolich, D., Giesecke, C., Mei, H. E., Reiter, K., Daridon, C., Lipsky, P. E., Dörner, T. et al., Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J. Immunol. 2010. 185: 3103-10. - PubMed
  936. Lino, A. C., Dang, V. D., Lampropoulou, V., Welle, A., Joedicke, J., Pohar, J., Simon, Q. et al., LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells. Immunity 2018. 49: 120-33.e9. - PubMed
  937. Vergroesen, R. D., Slot, L. M., van Schaik, B. D. C., Koning, M. T., Rispens, T., van Kampen, A. H. C., Toes, R. E. M. et al., N-Glycosylation Site Analysis of Citrullinated Antigen-Specific B-Cell Receptors Indicates Alternative Selection Pathways During Autoreactive B-Cell Development. Front. Immunol. 2019. 10: 2092. - PubMed
  938. Lighaam, L. C., Vermeulen, E., Bleker, T., Meijlink, K. J., Aalberse, R. C., Barnes, E., Culver, E. L. et al., Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J. Allergy Clin. Immunol. 2014. 133: 267-70.e1-6. - PubMed
  939. Koning, M. T., Kielbasa, S. M., Boersma, V., Buermans, H. P. J., van der Zeeuw, S. A. J., van Bergen, C. A. M., Cleven, A. H. G. et al., ARTISAN PCR: rapid identification of full-length immunoglobulin rearrangements without primer binding bias. Br. J. Haematol. 2017. 178: 983-986. - PubMed
  940. Gatto, M., Wiedemann, A., Nomovi, N., Reiter, K., Schrezenmeier, E., Rose, T., Szelinski, F. et al., Circulating Pentraxin3-Specific B Cells Are Decreased in Lupus Nephritis. Front. Immunol. 2019. 10: 29. - PubMed
  941. Odendahl, M., Mei, H., Hoyer, B. F., Jacobi, A. M., Hansen, A., Muehlinghaus, G., Berek, C. et al., Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 2005. 105: 1614-1621. - PubMed
  942. Mei, H. E., Hahne, S., Redlin, A., Hoyer, B. F., Wu, K., Baganz, L., Lisney, A. R. et al., Plasmablasts with a mucosal phenotype contribute to plasmacytosis in systemic lupus erythematosus. Arthritis Rheumatol. 2017. 69: 2018-2028. - PubMed
  943. Kristyanto, H., Blomberg, N. J., Slot, L. M., van der Voort, E. I. H., Kerkman, P. F., Bakker, A., Burgers, L. E. et al., Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Sci. Transl. Med. 2020. 12. - PubMed
  944. Willemze, A., Trouw, L. A., Toes, R. E. and Huizinga, T W., The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 2012. 8: 144-152. - PubMed
  945. Ramirez, J., Lukin, K. and Hagman, J., From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr. Opin. Immunol. 2010. 22: 177-184. - PubMed
  946. Hardy, R. R., Kincade, P. W. and Dorshkind, K., The protean nature of cells in the B lymphocyte lineage. Immunity 2007. 26: 703-714. - PubMed
  947. Cerutti, A., Puga, I. and Cols, M., New helping friends for B cells. Eur. J. Immunol. 2012. 42: 1956-1968. - PubMed
  948. Xu, Z., Zan, H., Pone, E. J., Mai, T. and Casali, P., Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 2012. 12: 517-531. - PubMed
  949. King, C., Tangye, S. G. and Mackay, C. R., T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 2008. 26: 741-766. - PubMed
  950. Papavasiliou, F. N. and Schatz, D. G., Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 2002. 109(Suppl): S35-S44. - PubMed
  951. Radbruch, A., Muehlinghaus, G., Luger, E. O., Inamine, A., Smith, K. G., Dorner, T. and Hiepe, F., Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 2006. 6: 741-750. - PubMed
  952. Honjo, T., Immunoglobulin genes. Annu. Rev. Immunol. 1983. 1: 499-528. - PubMed
  953. Schatz, D. G. and Ji, Y., Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 2011. 11: 251-263. - PubMed
  954. Shan, M., Carrillo, J., Yeste, A., Gutzeit, C., Segura-Garzon, D., Walland, A. C., Pybus, M. et al., Secreted IgD Amplifies Humoral T Helper 2 Cell Responses by Binding Basophils via Galectin-9 and CD44. Immunity 2018. 49: 709-724.e708. - PubMed
  955. Boonpiyathad, T., Meyer, N., Moniuszko, M., Sokolowska, M., Eljaszewicz, A., Wirz, O. F., Tomasiak-Lozowska, M. M. et al., High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy 2017. 72: 407-415. - PubMed
  956. Boonpiyathad, T., van de Veen, W., Wirz, O., Sokolowska, M., Ruckert, B., Tan, G., Sangasapaviliya, A. et al., Role of Der p 1-specific B cells in immune tolerance during 2 years of house dust mite-specific immunotherapy. J. Allergy Clin. Immunol. 2019. 143: 1077-1086.e1010. - PubMed
  957. van de Veen, W., Kratz, C. E., McKenzie, C. I., Aui, P. M., Neumann, J., van Noesel, C. J. M., Wirz, O. F. et al., Impaired memory B-cell development and antibody maturation with a skewing toward IgE in patients with STAT3 hyper-IgE syndrome. Allergy 2019. 74: 2394-2405. - PubMed
  958. Wirz, O. F., Uzulmez, O., Jansen, K., van de Veen, W., Lammela, A., Kainulainen, L., Vuorinen, T. et al., Increased antiviral response in circulating lymphocytes from hypogammaglobulinemia patients. Allergy 2020. 75: 3147-3158. - PubMed
  959. Katz, S. I., Parker, D. and Turk, J. L., B-cell suppression of delayed hypersensitivity reactions. Nature 1974. 251: 550-551. - PubMed
  960. Neta, R. and Salvin, S. B., Specific suppression of delayed hypersensitivity: the possible presence of a suppressor B cell in the regulation of delayed hypersensitivity. J. Immunol. 1974. 113: 1716-1725. - PubMed
  961. Wolf, D. S., Dittel, B. N., Hardardottir, F. and Janeway, C. A., Jr., Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 1996. 184: 2271-2278. - PubMed
  962. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. and Bhan, A. K., Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002. 16: 219-230. - PubMed
  963. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. and Anderton, S. M., B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 2002. 3: 944-950. - PubMed
  964. van de Veen, W., Stanic, B., Wirz, O. F., Jansen, K., Globinska, A. and Akdis, M., Role of regulatory B cells in immune tolerance to allergens and beyond. J. Allergy Clin. Immunol. 2016. 138: 654-665. - PubMed
  965. Rosser, E. C. and Mauri, C., Regulatory B cells: origin, phenotype, and function. Immunity 2015. 42: 607-612. - PubMed
  966. Wirz, O. F., Globinska, A., Ochsner, U., van de Veen, W., Eller, E., Christiansen, E. S., Halken, S. et al., Comparison of regulatory B cells in asthma and allergic rhinitis. Allergy 2018. - PubMed
  967. van de Veen, W., Stanic, B., Yaman, G., Wawrzyniak, M., Sollner, S., Akdis, D. G., Ruckert, B. et al., IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 2013. 131: 1204-1212. - PubMed
  968. Kaminski, D. A., Wei, C., Qian, Y., Rosenberg, A. F. and Sanz, I., Advances in human B cell phenotypic profiling. Front. Immunol. 2012. 3: 302. - PubMed
  969. Dubois, F., Limou, S., Chesneau, M., Degauque, N., Brouard, S. and Danger, R., Transcriptional meta-analysis of regulatory B cells. Eur. J. Immunol. 2020. 50: 1757-1769. - PubMed
  970. Matsumoto, M., Baba, A., Yokota, T., Nishikawa, H., Ohkawa, Y., Kayama, H., Kallies, A. et al., Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014. 41: 1040-1051. - PubMed
  971. Carter, N. A., Rosser, E. C. and Mauri, C., Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther. 2012. 14: R32. - PubMed
  972. Shen, P., Roch, T., Lampropoulou, V., O'Connor, R. A., Stervbo, U., Hilgenberg, E., Ries, S. et al., IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014. 507: 366-370. - PubMed
  973. Parekh, V. V., Prasad, D. V., Banerjee, P. P., Joshi, B. N., Kumar, A. and Mishra, G. C., B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J. Immunol. 2003. 170: 5897-5911. - PubMed
  974. Tian, J., Zekzer, D., Hanssen, L., Lu, Y., Olcott, A. and Kaufman, D. L., Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 2001. 167: 1081-1089. - PubMed
  975. Blair, P. A., Chavez-Rueda, K. A., Evans, J. G., Shlomchik, M. J., Eddaoudi, A., Isenberg, D. A., Ehrenstein, M. R. et al., Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 2009. 182: 3492-3502. - PubMed
  976. Carter, N. A., Vasconcellos, R., Rosser, E. C., Tulone, C., Munoz-Suano, A., Kamanaka, M., Ehrenstein, M. R. et al., Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol. 2011. 186: 5569-5579. - PubMed
  977. Evans, J. G., Chavez-Rueda, K. A., Eddaoudi, A., Meyer-Bahlburg, A., Rawlings, D. J., Ehrenstein, M. R. and Mauri, C., Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 2007. 178: 7868-7878. - PubMed
  978. Schioppa, T., Moore, R., Thompson, R. G., Rosser, E. C., Kulbe, H., Nedospasov, S., Mauri, C. et al., B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 2011. 108: 10662-10667. - PubMed
  979. Gray, M., Miles, K., Salter, D., Gray, D. and Savill, J., Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl. Acad. Sci. U. S. A. 2007. 104: 14080-14085. - PubMed
  980. Bankoti, R., Gupta, K., Levchenko, A. and Stager, S., Marginal zone B cells regulate antigen-specific T cell responses during infection. J. Immunol. 2012. 188: 3961-3971. - PubMed
  981. Miles, K., Heaney, J., Sibinska, Z., Salter, D., Savill, J., Gray, D. and Gray, M., A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc. Natl. Acad. Sci. U. S. A. 2012. 109: 887-892. - PubMed
  982. Matsushita, T., Horikawa, M., Iwata, Y. and Tedder, T. F., Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J. Immunol. 2010. 185: 2240-2252. - PubMed
  983. Kalampokis, I., Yoshizaki, A. and Tedder, T. F., IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res. Ther. 2013. 15: S1. - PubMed
  984. Watanabe, R., Ishiura, N., Nakashima, H., Kuwano, Y., Okochi, H., Tamaki, K., Sato, S. et al., Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 2010. 184: 4801-4809. - PubMed
  985. Sheng, J. R., Quan, S. and Soliven, B., CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis. J. Immunol. 2014. 193: 2669-2677. - PubMed
  986. Yang, M., Deng, J., Liu, Y., Ko, K. H., Wang, X., Jiao, Z., Wang, S. et al., IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing Th17 cell generation. Am. J. Pathol. 2012. 180: 2375-2385. - PubMed
  987. Yanaba, K., Yoshizaki, A., Asano, Y., Kadono, T., Tedder, T. F. and Sato, S., IL-10-producing regulatory B10 cells inhibit intestinal injury in a mouse model. Am. J. Pathol. 2011. 178: 735-743. - PubMed
  988. Khan, A. R., Amu, S., Saunders, S. P., Hams, E., Blackshields, G., Leonard, M. O., Weaver, C. T. et al., Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur. J. Immunol. 2015. 45: 1842-1854. - PubMed
  989. Amu, S., Saunders, S. P., Kronenberg, M., Mangan, N. E., Atzberger, A. and Fallon, P. G., Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol. 2010. 125: 1114-1124.e1118. - PubMed
  990. Yanaba, K., Bouaziz, J. D., Haas, K. M., Poe, J. C., Fujimoto, M. and Tedder, T. F., A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008. 28: 639-650. - PubMed
  991. Liu, M., Chen, H. Y., Luo, L., Wang, Y., Zhang, D., Song, N., Wang, F. B. et al., Neutralization of IL-10 produced by B cells promotes protective immunity during persistent HCV infection in humanized mice. Eur. J. Immunol. 2020. 50: 1350-1361. - PubMed
  992. Xiao, S., Brooks, C. R., Zhu, C., Wu, C., Sweere, J. M., Petecka, S., Yeste, A. et al., Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc. Natl. Acad. Sci. U. S. A. 2012. 109: 12105-12110. - PubMed
  993. Ding, Q., Yeung, M., Camirand, G., Zeng, Q., Akiba, H., Yagita, H., Chalasani, G. et al., Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 2011. 121: 3645-3656. - PubMed
  994. Neves, P., Lampropoulou, V., Calderon-Gomez, E., Roch, T., Stervbo, U., Shen, P., Kuhl, A. A. et al., Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection. Immunity 2010. 33: 777-790. - PubMed
  995. Dass, S., Vital, E. M. and Emery, P., Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 2007. 56: 2715-2718. - PubMed
  996. Goetz, M., Atreya, R., Ghalibafian, M., Galle, P. R. and Neurath, M. F., Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm. Bowel Dis. 2007. 13: 1365-1368. - PubMed
  997. Blair, P. A., Norena, L. Y., Flores-Borja, F., Rawlings, D. J., Isenberg, D. A., Ehrenstein, M. R. and Mauri, C., CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010. 32: 129-140. - PubMed
  998. Das, A., Ellis, G., Pallant, C., Lopes, A. R., Khanna, P., Peppa, D., Chen, A. et al., IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol. 2012. 189: 3925-3935. - PubMed
  999. Flores-Borja, F., Bosma, A., Ng, D., Reddy, V., Ehrenstein, M. R., Isenberg, D. A. and Mauri, C., CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 2013. 5: 173ra123. - PubMed
  1000. Iwata, Y., Matsushita, T., Horikawa, M., Dilillo, D. J., Yanaba, K., Venturi, G. M., Szabolcs, P. M. et al., Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011. 117: 530-541. - PubMed
  1001. Machado-Santos, J., Saji, E., Troscher, A. R., Paunovic, M., Liblau, R., Gabriely, G., Bien, C. G. et al., The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018. 141: 2066-2082. - PubMed
  1002. Horikawa, M., Weimer, E. T., DiLillo, D. J., Venturi, G. M., Spolski, R., Leonard, W. J., Heise, M. T. et al., Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J. Immunol. 2013. 190: 1158-1168. - PubMed
  1003. Menon, M., Blair, P. A., Isenberg, D. A. and Mauri, C., A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 2016. 44: 683-697. - PubMed
  1004. Tung, J. W., Mrazek, M. D., Yang, Y., Herzenberg, L. A. and Herzenberg, L. A., Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc. Natl. Acad. Sci. U.S.A. 2006. 103: 6293-6298. - PubMed
  1005. Manz, R. A., Hauser, A. E., Hiepe, F. and Radbruch, A., Maintenance of serum antibody levels. Annu. Rev. Immunol. 2005. 23: 367-386. - PubMed
  1006. Wen, L., Brill-Dashoff, J., Shinton, S. A., Asano, M., Hardy, R. R. and Hayakawa, K., Evidence of marginal-zone B cell-positive selection in spleen. Immunity 2005. 23: 297-308. - PubMed
  1007. Fillatreau, S. and Manz, R. A., Tolls for B cells. Eur. J. Immunol. 2006. 36: 798-801. - PubMed
  1008. Tornberg, U. C. and Holmberg, D., B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J. 1995. 14: 1680-1689. - PubMed
  1009. Ochsenbein, A. F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H. and Zinkernagel, R. M., Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999. 286: 2156-2159. - PubMed
  1010. Stall, A. M., Adams, S., Herzenberg, L. A. and Kantor, A. B., Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann. N. Y. Acad. Sci. 1992. 651: 33-43. - PubMed
  1011. Kristiansen, T. A., Jaensson Gyllenbäck, E., Zriwil, A., Björklund, T., Daniel, J. A., Sitnicka, E., Soneji, S. et al., Cellular barcoding links B-1a B cell potential to a fetal hematopoietic stem cell state at the single-cell level. Immunity 2016. 45: 346-357. - PubMed
  1012. Pedersen, G. K., Li, X., Khoenkhoen, S., Ádori, M., Beutler, B. and Karlsson Hedestam, G. B., B-1a cell development in splenectomized neonatal mice. Front. Immunol. 2018. 9: 1738. - PubMed
  1013. Melchers, F., ten Boekel, E., Seidl, T., Kong, X. C., Yamagami, T., Onishi, K., Shimizu, T. et al., Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev. 2000. 175: 33-46. - PubMed
  1014. Montecino-Rodriguez, E., Leathers, H. and Dorshkind, K., Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 2006. 7: 293-301. - PubMed
  1015. Rajewsky, K., Early and late B-cell development in the mouse. Curr. Opin. Immunol. 1992. 4: 171-176. - PubMed
  1016. ten Boekel, E., Melchers, F. and Rolink, A., The status of Ig loci rearrangements in single cells from different stages of B cell development. Int. immunol. 1995. 7: 1013-9. - PubMed
  1017. Grawunder, U., Leu, T. M., Schatz, D. G., Werner, A., Rolink, A. G., Melchers, F. and Winkler, T. H., Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 1995. 3: 601-608. - PubMed
  1018. Rolink, A. and Melchers, F., Molecular and cellular origins of B lymphocyte diversity. Cell 1991. 66: 1081-1094. - PubMed
  1019. Lu, L., Smithson, G., Kincade, P. W. and Osmond, D. G., Two models of murine B lymphopoiesis: a correlation. Eur. J. Immunol. 1998. 28: 1755-1761. - PubMed
  1020. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. and Hayakawa, K., Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 1991. 173: 1213-1225. - PubMed
  1021. Melchers, F., Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., Ghia, P. and Andersson, J., Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol. 1995. 7: 214-227. - PubMed
  1022. Ghia, P., Boekel, E. ten, Sanz, E., de la Hera, A., Rolink, A. and Melchers, F., Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med. 1996. 184: 2217-2229. - PubMed
  1023. Allman, D., Lindsley, R. C., DeMuth, W., Rudd, K., Shinton, S. A. and Hardy, R. R., Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 2001. 167: 6834-6840. - PubMed
  1024. Hao, Z. and Rajewsky, K., Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med. 2001. 194: 1151-1164. - PubMed
  1025. Wells, S. M., Kantor, A. B. and Stall, A. M., CD43 (S7) expression identifies peripheral B cell subsets. J. Immunol. 1994. 153: 5503-5515. - PubMed
  1026. Hart, G., Flaishon, L., Becker-Herman, S. and Shachar, I., Ly49D receptor expressed on immature B cells regulates their IFN-gamma secretion, actin polymerization, and homing. J. Immunol. 2003. 171: 4630-4638. - PubMed
  1027. Kozmik, Z., Wang, S., Dörfler, P., Adams, B. and Busslinger, M., The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell. Biol. 1992. 12: 2662-2672. - PubMed
  1028. Pracht, K., Meinzinger, J., Daum, P., Schulz, S. R., Reimer, D., Hauke, M., Roth, E. et al., A new staining protocol for detection of murine antibody-secreting plasma cell subsets by flow cytometry. Eur. J. Immunol. 2017. 47: 1389-1392. - PubMed
  1029. Li, Y. S., Wasserman, R., Hayakawa, K. and Hardy, R. R., Identification of the earliest B lineage stage in mouse bone marrow. Immunity 1996. 5: 527-535. - PubMed
  1030. Koni, P. A., Joshi, S. K., Temann, U.-A., Olson, D., Burkly, L. and Flavell, R. A., Conditional vascular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. J. Exp. Med. 2001. 193: 741-754. - PubMed
  1031. Kikuchi, K., Lai, A. Y., Hsu, C.-L. and Kondo, M., IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med. 2005. 201: 1197-1203. - PubMed
  1032. Rolink, A., Boekel, E. ten, Melchers, F., Fearon, D. T., Krop, I. and Andersson, J., A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 1996. 183: 187-194. - PubMed
  1033. Osmond, D. G., Rolink, A. and Melchers, F., Murine B lymphopoiesis: towards a unified model. Immunol. Today 1998. 19: 65-68. - PubMed
  1034. Melchers, F., Haasner, D., Grawunder, U., Kalberer, C., Karasuyama, H., Winkler, T. and Rolink, A. G., Roles of IgH and L chains and of surrogate H and L chains in the development of cells of the B lymphocyte lineage. Annu. Rev. Immunol. 1994. 12: 209-225. - PubMed
  1035. Rolink, A., Streb, M., Nishikawa, S. and Melchers, F., The c-kit-encoded tyrosine kinase regulates the proliferation of early pre-B cells. Eur. J. Immunol. 1991. 21: 2609-2612. - PubMed
  1036. Tonegawa, S., Somatic generation of antibody diversity. Nature 1983. 302: 575-581. - PubMed
  1037. ten Boekel, E., Melchers, F. and Rolink, A. G., Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 1998. 8: 199-207. - PubMed
  1038. Rumfelt, L. L., Zhou, Y., Rowley, B. M., Shinton, S. A. and Hardy, R. R., Lineage specification and plasticity in CD19- early B cell precursors. J. Exp. Med. 2006. 203: 675-687. - PubMed
  1039. Osmond, D. G., B cell development in the bone marrow. Semin. Immunol. 1990. 2: 173-180. - PubMed
  1040. Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. and Kearney, J. F., Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol. 1997. 27: 2366-2374. - PubMed
  1041. Cancro, M. P., Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol. Rev. 2004. 197: 89-101. - PubMed
  1042. Krzyzak, L., Seitz, C., Urbat, A., Hutzler, S., Ostalecki, C., Gläsner, J., Hiergeist, A. et al.. CD83 modulates B cell activation and germinal center responses. J. Immunol. 2016. 196: 3581-3594. - PubMed
  1043. Dogan, I., Bertocci, B., Vilmont, V., Delbos, F., Mégret, J., Storck, S., Reynaud, C.-A. et al., Multiple layers of B cell memory with different effector functions. Nat. Immunol. 2009 10: 1292-1299. - PubMed
  1044. Bell, J. and Gray, D., Antigen-capturing cells can masquerade as memory B cells. J. Exp. Med. 2003. 197: 1233-1244. - PubMed
  1045. Schittek, B. and Rajewsky, K., Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 1990. 346: 749-751. - PubMed
  1046. Anderson, S. M., Tomayko, M. M., Ahuja, A., Haberman, A. M. and Shlomchik, M. J., New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 2007. 204: 2103-2114. - PubMed
  1047. Good-Jacobson, K. L., Song, E., Anderson, S., Sharpe, A. H. and Shlomchik, M. J., CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J. Immunol. 2012. 188: 4217-4225. - PubMed
  1048. Zuccarino-Catania, G. V., Sadanand, S., Weisel, F. J., Tomayko, M. M., Meng, H., Kleinstein, S. H., Good-Jacobson, K. L. et al., CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 2014. 15: 631-637. - PubMed
  1049. Tomayko, M. M., Steinel, N. C., Anderson, S. M. and Shlomchik, M. J., Cutting edge: hierarchy of maturity of murine memory B cell subsets. J. Immunol. 2010. 185: 7146-7150. - PubMed
  1050. Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. and Shlomchik, M. J., A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 2016. 44: 116-130. - PubMed
  1051. Weisel, F. and Shlomchik, M., Memory B cells of mice and humans. Annu. Rev. Immunol. 2017. 35: 255-284. - PubMed
  1052. Hayakawa, K., Formica, A. M., Nakao, Y., Ichikawa, D., Shinton, S. A., Brill-Dashoff, J. et al., Early generated B-1-derived B cells have the capacity To progress To become mantle cell lymphoma-like neoplasia in aged mice. J. Immunol. 2018. 201: 804-13. - PubMed
  1053. Arnold, L. W., Pennell, C. A., McCray, S. K. and Clarke, S. H., Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med. 1994. 179: 1585-1595. - PubMed
  1054. Baumgarth, N., The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2011. 11: 34-46. - PubMed
  1055. Rauch, P. J., Chudnovskiy, A., Robbins, C. S., Weber, G. F., Etzrodt, M., Hilgendorf, I., Tiglao, E. et al., Innate response activator B cells protect against microbial sepsis. Science 2012. 335: 597-601. - PubMed
  1056. Bouaziz, J.-D., Yanaba, K. and Tedder, T. F., Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 2008. 224: 201-214. - PubMed
  1057. Shen, P. and Fillatreau, S., Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 2015. 15: 441-451. - PubMed
  1058. Bermejo, D. A., Jackson, S. W., Gorosito-Serran, M., Acosta-Rodriguez, E. V., Amezcua-Vesely, M. C., Sather, B. D., Singh, A. K. et al., Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat. Immunol. 2013.14: 514-522. - PubMed
  1059. Fillatreau, S., Pathogenic functions of B cells in autoimmune diseases: IFN-γ production joins the criminal gang. Eur. J. Immunol. 2015. 45: 966-970. - PubMed
  1060. Mizoguchi, A. and Bhan, A. K., A case for regulatory B cells. J. Immunol. 2006. 176: 705-710. - PubMed
  1061. Maseda, D., Smith, S. H., DiLillo, D. J., Bryant, J. M., Candando, K. M., Weaver, C. T. and Tedder, T. F., Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J. Immunol. 2012. 188: 1036-1048. - PubMed
  1062. Kulkarni, U., Karsten, C. M., Kohler, T., Hammerschmidt, S., Bommert, K., Tiburzy, B., Meng, L. et al.. IL-10 mediates plasmacytosis-associated immunodeficiency by inhibiting complement-mediated neutrophil migration. J. Allergy Clin. Immunol. 2016. 137: 1487-1497.e6. - PubMed
  1063. Blanc, P., Moro-Sibilot, L., Barthly, L., Jagot, F., This, S., de Bernard, S., Buffat, L. et al., Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge. Nat. Commun. 2016. 7: 13600. - PubMed
  1064. Tedder, T. F., B10 cells: a functionally defined regulatory B cell subset. J. Immunol. 2015. 194: 1395-1401. - PubMed
  1065. Xiao, S., Brooks, C. R., Sobel, R. A. and Kuchroo, V. K., Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J. Immunol. 2015. 194: 1602-1608. - PubMed
  1066. Fillatreau, S., Natural regulatory plasma cells. Curr. Opin. Immunol. 2018. 55: 62-66. - PubMed
  1067. Loder, F., Mutschler, B., Ray, R. J., Paige, C. J., Sideras, P., Torres, R., Lamers, M. C. et al., B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 1999. 190: 75-89. - PubMed
  1068. Carsetti, R., Köhler, G. and Lamers, M. C., Transitional B cells are the target of negative selection in the B cell compartment. J. Exp. Med. 1995. 181: 2129-2140. - PubMed
  1069. Haas, K. M., Poe, J. C., Steeber, D. A. and Tedder, T. F., B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 2005. 23: 7-18. - PubMed
  1070. Hardy, R. R., Hayakawa, K., Parks, D. R., Herzenberg, L. A. and Herzenberg, L. A., Murine B cell differentiation lineages. J. Exp. Med. 1984. 159: 1169-1188. - PubMed
  1071. Pedersen, G. K., Àdori, M., Khoenkhoen, S., Dosenovic, P., Beutler, B. and Karlsson Hedestam, G. B., B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS. Proc. Natl. Acad. Sci. U.S.A. 2014. 111: E4119-4126. - PubMed
  1072. Herzenberg, L. A., Stall, A. M., Braun, J., Weaver, D., Baltimore, D., Herzenberg, L. A. and Grosschedl, R., Depletion of the predominant B-cell population in immunoglobulin mu heavy-chain transgenic mice. Nature 1987. 329: 71-73. - PubMed
  1073. Shinall, S. M., Gonzalez-Fernandez, M., Noelle, R. J. and Waldschmidt, T. J., Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol. 2000. 164: 5729-5738. - PubMed
  1074. Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., Sugai, M. et al., Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 2007. 27: 3008-3022. - PubMed
  1075. Grötsch, B., Brachs, S., Lang, C., Luther, J., Derer, A., Schlötzer-Schrehardt, U. and Bozec, A., The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells. J. Exp. Med. 2014. 211: 2199-2212. - PubMed
  1076. Yoshida, T., Mei, H., Dorner, T., Hiepe, F., Radbruch, A., Fillatreau, S. and Hoyer, B. F., Memory B and memory plasma cells. Immunol. Rev. 2010. 237: 117-139. - PubMed
  1077. Quach, T. D., Rodriguez-Zhurbenko, N., Hopkins, T. J., Guo, X., Hernandez, A. M., Li, W. and Rothstein, T. L., Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J. Immunol. 2016. 196: 1060-1069. - PubMed
  1078. Landsverk, O. J., Snir, O., Casado, R. B., Richter, L., Mold, J. E., Reu, P., Horneland, R. et al., Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 2017. 214: 309-317. - PubMed
  1079. Manz, R. A., Thiel, A. and Radbruch, A., Lifetime of plasma cells in the bone marrow. Nature 1997. 388: 133-134. - PubMed
  1080. Slifka, M. K., Antia, R., Whitmire, J. K. and Ahmed, R., Humoral immunity due to long-lived plasma cells. Immunity 1998. 8: 363-372. - PubMed
  1081. Huggins, J., Pellegrin, T., Felgar, R. E., Wei, C., Brown, M., Zheng, B., Milner, E. C. B. et al., CpG DNA activation and plasma-cell differentiation of CD27- naive human B cells. Blood 2007. 109: 1611-1619. - PubMed
  1082. Cocco, M., Stephenson, S., Care, M. A., Newton, D., Barnes, N. A., Davison, A., Rawstron, A. et al., In vitro generation of long-lived human plasma cells. J. Immunol. 2012. 189: 5773-5785. - PubMed
  1083. Mei, H. E., Frolich, D., Giesecke, C., Loddenkemper, C., Reiter, K., Schmidt, S., Feist, E. et al., Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 2010. 116: 5181-5190. - PubMed
  1084. Mei, H. E., Yoshida, T., Sime, W., Hiepe, F., Thiele, K., Manz, R. A., Radbruch, A. et al., Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009. 113: 2461-2469. - PubMed
  1085. Kantele, A., Hakkinen, M., Moldoveanu, Z., Lu, A., Savilahti, E., Alvarez, R. D., Michalek, S. et al., Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect. Immun. 1998. 66: 5630-5635. - PubMed
  1086. Gustave, C. A., Gossez, M., Demaret, J., Rimmele, T., Lepape, A., Malcus, C., Poitevin-Later, F. et al., Septic shock shapes B cell response toward an exhausted-like/immunoregulatory profile in patients. J. Immunol. 2018. 200: 2418-2425. - PubMed
  1087. Hoyer, B. F., Mumtaz, I. M., Loddenkemper, K., Bruns, A., Sengler, C., Hermann, K. G., Maza, S. et al., Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann. Rheum. Dis. 2012. 71: 75-79. - PubMed
  1088. Jacobi, A. M., Mei, H., Hoyer, B. F., Mumtaz, I. M., Thiele, K., Radbruch, A., Burmester, G.-R. et al., HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2010. 69: 305-308. - PubMed
  1089. ten Boekel, E., Siegert, C. E., Vrielink, G. J., Van Dam, V. C., Ceelen, A. and De Kieviet, W., Analyses of CD27++ plasma cells in peripheral blood from patients with bacterial infections and patients with serum antinuclear antibodies. J. Clin. Immunol. 2007. 27: 467-476. - PubMed
  1090. Wrammert, J., Koutsonanos, D., Li, G. M., Edupuganti, S., Sui, J., Morrissey, M., McCausland, M. et al., Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 2011. 208: 181-193. - PubMed
  1091. Sokal, A., Chappert, P., Barba-Spaeth, G., Roeser, A., Fourati, S., Azzaoui, I., Vandenberghe, A. et al., Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 2021. 184: 1201-1213.e14. - PubMed
  1092. Mathew, D., Giles, J. R., Baxter, A. E., Oldridge, D. A., Greenplate, A. R., Wu, J. E., Alanio, C. et al., Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020. 369. - PubMed
  1093. Stephenson, E., Reynolds, G., Botting, R. A., Calero-Nieto, F. J., Morgan, M. D., Tuong, Z. K., Bach, K. et al., Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 2021. 27: 904-16. - PubMed
  1094. Pollok, K., Mothes, R., Ulbricht, C., Liebheit, A., Gerken, J. D., Uhlmann, S., Paul, F. et al., The chronically inflamed central nervous system provides niches for long-lived plasma cells. Acta Neuropathol. Commun. 2017. 5: 88. - PubMed
  1095. Winges, K. M., Gilden, D. H., Bennett, J. L., Yu, X., Ritchie, A. M. and Owens, G. P., Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts. J. Neuroimmunol. 2007. 192: 226-234. - PubMed
  1096. Scheel, T., Gursche, A., Zacher, J., Haupl, T. and Berek, C., V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum. 2011. 63: 63-72. - PubMed
  1097. Teng, Y. K., Levarht, E. W., Toes, R. E., Huizinga, T. W. and van Laar, J M., Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. Ann. Rheum. Dis. 2009. 68: 1011-1016. - PubMed
  1098. Corcione, A., Ferlito, F., Gattorno, M., Gregorio, A., Pistorio, A., Gastaldi, R., Gambini, C. et al., Phenotypic and functional characterization of switch memory B cells from patients with oligoarticular juvenile idiopathic arthritis. Arthritis Res. Ther. 2009. 11: R150. - PubMed
  1099. Medina, F., Segundo, C., Jimenez-Gomez, G., Gonzalez-Garcia, I., Campos-Caro, A. and Brieva, J A., Higher maturity and connective tissue association distinguish resident from recently generated human tonsil plasma cells. J. Leukoc Biol. 2007. 82: 1430-1436. - PubMed
  1100. Frigyesi, I., Adolfsson, J., Ali, M., Christophersen, M. K., Johnsson, E., Turesson, I., Gullberg, U. et al., Robust isolation of malignant plasma cells in multiple myeloma. Blood 2014. 123: 1336-1340. - PubMed
  1101. Burns, M., Ostendorf, L., Biesen, R., Grutzkau, A., Hiepe, F., Mei, H. E. and Alexander, T., Dysregulated CD38 expression on peripheral blood immune cell subsets in SLE. Int. J. Mol. Sci. 2021. 22: 2024. - PubMed
  1102. Hacbarth, E. and Kajdacsy-Balla, A., Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 1986. 29: 1334-1342. - PubMed
  1103. Mei, H. E., Schmidt, S. and Dorner, T., Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res. Ther. 2012. 14: S1. - PubMed
  1104. Sato, S., Fujimoto, M., Hasegawa, M. and Takehara, K., Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 2004. 50: 1918-1927. - PubMed
  1105. Medina, F., Segundo, C., Campos-Caro, A., Gonzalez-Garcia, I. and Brieva, J A., The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 2002. 99: 2154-2161. - PubMed
  1106. Caraux, A., Klein, B., Paiva, B., Bret, C., Schmitz, A. and Fuhler, G. M., Bos, N. A. et al., Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica 2010. 95: 1016-1020. - PubMed
  1107. Arce, S., Luger, E., Muehlinghaus, G., Cassese, G., Hauser, A., Horst, A., Lehnert, K. et al., CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J. Leukoc Biol. 2004. 75: 1022-1028. - PubMed
  1108. Jourdan, M., Caraux, A., Caron, G., Robert, N., Fiol, G., Reme, T., Bolloré, K. et al., Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. J. Immunol. 2011. 187: 3931-41. - PubMed
  1109. Sanz, I., Wei, C., Jenks, S. A., Cashman, K. S., Tipton, C., Woodruff, M. C., Woodruff, M. C. et al., Challenges and opportunities for consistent classification of human B cell and plasma cell populations. Front. Immunol. 2019. 10: 2458. - PubMed
  1110. Arumugakani, G., Stephenson, S. J., Newton, D. J., Rawstron, A., Emery, P., Doody, G. M., McGonagle, D. et al., Early emergence of CD19-negative human antibody-secreting cells at the plasmablast to plasma cell transition. J. Immunol. 2017. 198: 4618-4628. - PubMed
  1111. Nowicka, M., Krieg, C., Crowell, H. L., Weber, L. M., Hartmann, F. J., Guglietta, S., Becher, B. et al., CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res. 2017. 6: 748. - PubMed
  1112. Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J. and Snyder-Cappione, J E., Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 2019. 10: 5415. - PubMed
  1113. Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2018. - PubMed
  1114. Lokhorst, H. M., Plesner, T., Laubach, J. P., Nahi, H., Gimsing, P., Hansson, M., Minnema, M. C. et al., Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 2015. 373: 1207-1219. - PubMed
  1115. Ostendorf, L., Burns, M., Durek, P., Heinz, G. A., Heinrich, F., Garantziotis, P., Enghard, P. et al., Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 2020. 383: 1149-1155. - PubMed
  1116. Halliley, J. L., Tipton, C. M., Liesveld, J., Rosenberg, A. F., Darce, J., Gregoretti, I. V., Popova, L. et al., Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 2015. 43: 132-145. - PubMed
  1117. Peceliunas, V., Janiulioniene, A., Matuzeviciene, R. and Griskevicius, L., Six color flow cytometry detects plasma cells expressing aberrant immunophenotype in bone marrow of healthy donors. Cytometry B Clin. Cytom. 2011. 80: 318-323. - PubMed
  1118. Terstappen, L. W., Johnsen, S., Segers-Nolten, I. M. and Loken, M R., Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 1990. 76: 1739-1747. - PubMed
  1119. Pritz, T., Lair, J., Ban, M., Keller, M., Weinberger, B., Krismer, M., and Grubeck-Loebenstein, B., Plasma cell numbers decrease in bone marrow of old patients. Eur. J. Immunol. 2015. 45: 738-746. - PubMed
  1120. Carrell, J. and Groves, C J., OMIP-043: Identification of human antibody secreting cell subsets. Cytometry A 2018. 93: 190-193. - PubMed
  1121. Pinto, D., Montani, E., Bolli, M., Garavaglia, G., Sallusto, F., Lanzavecchia, A. and Jarrossay, D., A functional BCR in human IgA and IgM plasma cells. Blood 2013. 121: 4110-4114. - PubMed
  1122. Mesin, L., Di Niro, R., Thompson, K. M., Lundin, K. E. and Sollid, L M., Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J. Immunol. 2011. 187: 2867-2874. - PubMed
  1123. Chen, K., Xu, W., Wilson, M., He, B., Miller, N. W., Bengten, E., Edholm, E.-S. et al., Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol. 2009. 10: 889-898. - PubMed
  1124. Laurent, S. A., Hoffmann, F. S., Kuhn, P.-H., Cheng, Q., Chu, Y., Schmidt-Supprian, M., Hauck, S. M. et al., γ-secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015. 6: 7333. - PubMed
  1125. Kunkel, E. J. and Butcher, E C., Plasma-cell homing. Nat. Rev. Immunol. 2003. 3: 822-829. - PubMed
  1126. Delogu, A., Schebesta, A., Sun, Q., Aschenbrenner, K., Perlot, T. and Busslinger, M., Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006. 24: 269-281. - PubMed
  1127. Sarkander, J., Hojyo, S. and Tokoyoda, K., Vaccination to gain humoral immune memory. Clin. Transl. Immunol. 2016. 5: e120. - PubMed
  1128. Wrammert, J., Onlamoon, N., Akondy, R. S., Perng, G. C., Polsrila, K., Chandele, A., Kwissa, M. et al., Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 2012. 86: 2911-2918. - PubMed
  1129. Blanchard-Rohner, G., Pulickal, A. S., Jol-van der Zijde, C. M., Snape, M. D. and Pollard, A J., Appearance of peripheral blood plasma cells and memory B cells in a primary and secondary immune response in humans. Blood 2009. 114: 4998-5002. - PubMed
  1130. Appanna, R., Kg, S., Xu, M. H., Toh, Y. X., Velumani, S., Carbajo, D., Lee, C. Y. et al., Plasmablasts during acute dengue infection represent a small subset of a broader virus-specific. Memory B Cell Pool. EBioMedicine. 2016. 12: 178-188. - PubMed
  1131. Davis, C. W., Jackson, K. J. L., McCausland, M. M., Darce, J., Chang, C., Linderman, S. L., Chennareddy, C. et al., Influenza vaccine-induced human bone marrow plasma cells decline within a year after vaccination. Science 2020. 370: 237-241. - PubMed
  1132. Tooze, R. M., A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Front. Immunol. 2013. 4: 460. - PubMed
  1133. Cheng, Q., Pelz, A., Taddeo, A., Khodadadi, L., Klotsche, J., Hoyer, B. F., Alexander, T. et al., Selective depletion of plasma cells in vivo based on the specificity of their secreted antibodies. Eur. J. Immunol. 2020. 50: 284-291. - PubMed
  1134. Hiepe, F. and Radbruch, A., Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat. Rev. Nephrol. 2016. 12: 232-240. - PubMed
  1135. Oracki, S. A., Walker, J. A., Hibbs, M. L., Corcoran, L. M. and Tarlinton, D M., Plasma cell development and survival. Immunol. rev. 2010. 237: 140-159. - PubMed
  1136. Huntington, N. D., Xu, Y., Puthalakath, H., Light, A., Willis, S. N., Strasser, A., Tarlinton, D. M. et al., CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. immunol. 2006. 7: 190-198. - PubMed
  1137. Krautler, N. J., Suan, D., Butt, D., Bourne, K., Hermes, J. R., Chan, T. D., Sundling, C. et al., Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J. exp. med. 2017. 214: 1259-1267. e-pub ahead of print 2017/04/02. - PubMed
  1138. Bortnick, A. and Allman, D., What is and what should always have been: long-lived plasma cells induced by T cell-independent antigens. J. Immunol. 2013. 190: 5913-5918. e-pub ahead of print 2013/06/12; - PubMed
  1139. Bortnick, A., Chernova, I., Quinn W. J., 3rd, Mugnier, M., Cancro, M. P. and Allman, D., Long-lived bone marrow plasma cells are induced early in response to T cell-independent or T cell-dependent antigens. J. Immunol. 2012. 188: 5389-5396. - PubMed
  1140. Foote, J. B., Mahmoud, T. I., Vale, A. M. and Kearney, J F., Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting cells. J. Immunol. 2012. 188: 57-67. - PubMed
  1141. Koh, C. Y. and Yuan, D., The functional relevance of NK-cell-mediated upregulation of antigen-specific IgG2a responses. Cell. Immunol. 2000. 204: 135-142. - PubMed
  1142. Ionescu, L. and Urschel, S., Memory B cells and long-lived plasma cells. Transplantation 2019. 103: 890-898. e-pub ahead of print 2019/02/13; - PubMed
  1143. Brynjolfsson, S. F., Persson Berg, L., Olsen Ekerhult, T., Rimkute, I., Wick, M. J., Martensson, I. L., Grimsholm, O. et al., Long-lived plasma cells in mice and men. Front. Immunol. 2018. 9: 2673. - PubMed
  1144. Steensma, D. P., Gertz, M. A., Greipp, P. R., Kyle, R. A., Lacy, M. Q., Lust, J. A., Offord, J. R. et al., A high bone marrow plasma cell labeling index in stable plateau-phase multiple myeloma is a marker for early disease progression and death. Blood 2001. 97: 2522-2523. - PubMed
  1145. Bakkus, M. H., Heirman, C., Van Riet, I., Van Camp, B. and Thielemans, K., Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992. 80: 2326-2335. - PubMed
  1146. Kosmas, C., Stamatopoulos, K., Stavroyianni, N., Zoi, K., Belessi, C., Viniou, N., Kollia, P. et al., Origin and diversification of the clonogenic cell in multiple myeloma: lessons from the immunoglobulin repertoire. Leukemia 2000. 14: 1718-1726. - PubMed
  1147. Pfeifer, S., Perez-Andres, M., Ludwig, H., Sahota, S. S. and Zojer, N., Evaluating the clonal hierarchy in light-chain multiple myeloma: implications against the myeloma stem cell hypothesis. Leukemia 2011. 25: 1213-1216. - PubMed
  1148. Hansmann, L., Han, A., Penter, L., Liedtke, M. and Davis, M M., Clonal expansion and interrelatedness of distinct B-lineage compartments in multiple myeloma bone marrow. Cancer Immunol. Res. 2017. 5: 744-754. - PubMed
  1149. Berliner, N., Ault, K. A., Martin, P. and Weinberg, D S., Detection of clonal excess in lymphoproliferative disease by kappa/lambda analysis: correlation with immunoglobulin gene DNA rearrangement. Blood 1986. 67: 80-85. - PubMed
  1150. Hideshima, T., Nakamura, N., Chauhan, D. and Anderson, K C., Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001. 20: 5991-6000. - PubMed
  1151. de Haart, S. J., van de Donk, N. W., Minnema, M. C., Huang, J. H., Aarts-Riemens, T., Bovenschen, N., Yuan, H. et al., Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance. Clin. Cancer Res. J. Am Assoc. Cancer Res. 2013. 19: 5591-5601. - PubMed
  1152. Hideshima, T., Bergsagel, P. L., Kuehl, W. M. and Anderson, K C., Advances in biology of multiple myeloma: clinical applications. Blood 2004. 104: 607-618. - PubMed
  1153. Mitsiades, C. S., Mitsiades, N., Munshi, N. C. and Anderson, K C., Focus on multiple myeloma. Cancer Cell 2004. 6: 439-444. - PubMed
  1154. Mitsiades, C. S., Mitsiades, N. S., Richardson, P. G., Munshi, N. C. and Anderson, K C., Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J. Cell. Biochem. 2007. 101: 950-968. - PubMed
  1155. Bianchi, G. and Munshi, N C., Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015. 125: 3049-3058. - PubMed
  1156. Keats, J. J., Chesi, M., Egan, J. B., Garbitt, V. M., Palmer, S. E., Braggio, E., Blackburn, P. R. et al., Clonal competition with alternating dominance in multiple myeloma. Blood 2012. 120: 1067-1076. - PubMed
  1157. Lohr, J. G., Kim, S., Gould, J., Knoechel, B., Drier, Y., Cotton, M. J., Gray, D. et al., Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl. Med. 2016. 8: 363ra147. - PubMed
  1158. Lohr, J. G., Stojanov, P., Carter, S. L., Cruz-Gordillo, P., Lawrence, M. S., Auclair, D., Sougnez, C. et al., Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014. 25: 91-101. - PubMed
  1159. Paino, T., Paiva, B., Sayagues, J. M., Mota, I., Carvalheiro, T., Corchete, L. A., Aires-Mejía, I. et al., Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia 2015. 29: 1186-1194. - PubMed
  1160. Arroz, M., Came, N., Lin, P., Chen, W., Yuan, C., Lagoo, A., Monreal, M. et al., Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin. Cytom. 2016. 90: 31-39. - PubMed
  1161. Flores-Montero, J., de Tute, R., Paiva, B., Perez, J. J., Bottcher, S., Wind, H., Sanoja, L. et al., Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin. Cytom. 2016 90: 61-72. - PubMed
  1162. Jelinek, T. and Hajek, R., Monoclonal antibodies - A new era in the treatment of multiple myeloma. Blood Rev. 2016. 30: 101-110. - PubMed
  1163. Paiva, B., Puig, N., Cedena, M. T., de Jong, B. G., Ruiz, Y., Rapado, I., Martinez-Lopez, J. et al., Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia 2017. 31: 382-392. - PubMed
  1164. Halliley, J. L., Tipton, C. M., Liesveld, J., Rosenberg, A. F., Darce, J., Gregoretti, I. V., Popova, L. et al., Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 2015. 43: 132-145. - PubMed
  1165. Lisenko, K., Schonland, S., Hegenbart, U., Wallenwein, K., Braun, U., Mai, E. K., Hillengass, J. et al., Potential therapeutic targets in plasma cell disorders: A flow cytometry study. Cytometry B Clin. Cytom. 2017. 92: 145-152. - PubMed
  1166. Smock, K. J., Perkins, S. L. and Bahler, D W., Quantitation of plasma cells in bone marrow aspirates by flow cytometric analysis compared with morphologic assessment. Arch. Pathol. Lab. Med. 2007. 131: 951-955. - PubMed
  1167. Lokhorst, H. M., Laubach, J. and Nahi, H., Dose-dependent efficacy of daratumumab (DARA) as monotherapy in patients with relapsed or refractory multiple myeloma (RR MM). In: 2014 ASCO Annual Meeting. Journal of clinical oncology, 2014. p abstract 8513. - PubMed
  1168. Lammerts van Bueren, J. Jakobs, D. and Kaldenhoven, N., Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. In: 56th ASH Annual Meeting & Exposition: Oral and Poster Abstracts, 2014. - PubMed
  1169. Oberle, A., Brandt, A., Alawi, M., Langebrake, C., Janjetovic, S., Wolschke, C., Schütze, K. et al., Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection. Haematologica 2017. 102: e368-e370. - PubMed
  1170. Perincheri, S., Torres, R., Tormey, C. A., Smith, B. R., Rinder, H. M. and Siddon, A. J. Daratumumab interferes with flow cytometric evaluation of multiple myeloma. 2016. 128: 5630-5630. - PubMed
  1171. Malaer, J. D. and Mathew, P A., CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am. J. Cancer Res. 2017. 7: 1637-1641. e-pub ahead of print 2017/09/02. - PubMed
  1172. Tellier, J., Shi, W., Minnich, M., Liao, Y., Crawford, S., Smyth, G. K., Kallies, A. et al., Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat. Immunol. 2016. 17: 323-330. - PubMed
  1173. Paiva, B., Garcia-Sanz, R. and San Miguel, J. F., Multiple myeloma minimal residual disease. Cancer Treat. Res. 2016. 169: 103-122. - PubMed
  1174. Paiva, B., van Dongen, J. J. and Orfao, A., New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015. 125: 3059-3068. - PubMed
  1175. Flores-Montero, J., Sanoja-Flores, L., Paiva, B., Puig, N., Garcia-Sanchez, O., Bottcher, S., van der Velden, V. H. J. et al., Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017. 31: 2094-2103. - PubMed
  1176. Roschewski, M., Stetler-Stevenson, M., Yuan, C., Mailankody, S., Korde, N. and Landgren, O., Minimal residual disease: what are the minimum requirements? J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 2014. 32: 475-476. - PubMed
  1177. Paiva, B., Puig, N., Cedena, M. T., Rosinol, L., Cordon, L., Vidriales, M. B., Burgos, L. et al., Measurable residual disease by next-generation flow cytometry in multiple myeloma. J. Clin. Oncol. 2020. 38: 784-792. - PubMed
  1178. Rawstron, A. C., Orfao, A., Beksac, M., Bezdickova, L., Brooimans, R. A., Bumbea, H., Dalva, K. et al., Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008. 93: 431-438. - PubMed
  1179. Klein, U., Casola, S., Cattoretti, G., Shen, Q., Lia, M., Mo, T., Ludwig, T. et al., Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 2006. 7: 773-782. - PubMed
  1180. Kallies, A., Hasbold, J., Fairfax, K., Pridans, C., Emslie, D., McKenzie, B. S., Lew, A. M. et al., Initiation of plasma-cell differentiation is independent of the transcription factor blimp-1. Immunity 2007. 26: 555-566. - PubMed
  1181. Pracht, K., Meinzinger, J., Schulz, S. R., Daum, P., Côrte-Real, J., Hauke, M., Roth, E. et al., miR-148a controls metabolic programming and survival of mature CD19-negative plasma cells in mice. Eur. J. Immunol. 2020. n/a. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.202048993 - PubMed
  1182. Salmon, S. E. and Smith, B A., Immunoglobulin synthesis and total body tumor cell number in IgG multiple myeloma. J. Clin. Invest. 1970. 49: 1114-1121. - PubMed
  1183. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. and Corcoran, L M., The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 2015. 15: 160-171. - PubMed
  1184. Kallies, A., Hasbold, J., Tarlinton, D. M., Dietrich, W., Corcoran, L. M., Hodgkin, P. D. and Nutt, S L., Plasma cell ontogeny defined by quantitative changes in Blimp-1 expression. J. Exp. Med. 2004. 200: 967-977. - PubMed
  1185. Bankoti, R., Ogawa, C., Nguyen, T., Emadi, L., Couse, M., Salehi, S., Fan, X. et al., Differential regulation of effector and regulatory T cell function by Blimp1. Sci. Rep. 2017. 7: Available at: http://www.nature.com/articles/s41598-017-12171-3 - PubMed
  1186. Fukushima, P. I., Nguyen, P. K. T., O'Grady, P. and Stetler-Stevenson, M., Flow cytometric analysis of kappa and lambda light chain expression in evaluation of specimens for B-cell neoplasia. Cytometry 1996. 26: 243-252. - PubMed
  1187. Pelz, A., Schaffert, H., Diallo, R., Hiepe, F., Meisel, A. and Kohler, S., S1P receptor antagonists fingolimod and siponimod do not improve the outcome of experimental autoimmune myasthenia gravis mice after disease onset. Eur. J. Immunol. 2018. 48: 498-508. - PubMed
  1188. Chu, V. T., Fröhlich, A., Steinhauser, G., Scheel, T., Roch, T., Fillatreau, S., Lee, J. J. et al., Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 2011. 12: 151-159. - PubMed
  1189. Wilmore, J. R., Jones, D. D. and Allman, D., Protocol for improved resolution of plasma cell subpopulations by flow cytometry. Eur. J. Immunol. 2017. 47: 1386-1388. - PubMed
  1190. Cantor, J., Browne, C. D., Ruppert, R., Féral, C. C., Fässler, R., Rickert, R. C. and Ginsberg, M H., CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol. 2009. 10: 412-419. - PubMed
  1191. Wang, H., Gonzalez-Garcia, I., Traba, J., Jain, S., Conteh, S., Shin, D.-M., Qi, C. et al., ATP-degrading ENPP1 is required for survival (or persistence) of long-lived plasma cells. Sci. Rep. 2017. 7: 17867. - PubMed
  1192. Wrammert, J., Källberg, E., Agace, W. W. and Leanderson, T., Ly6C expression differentiates plasma cells from other B cell subsets in mice. Eur. J. Immunol. 2002. 32: 97-103. - PubMed
  1193. Smith, K. G. C., Hewitson, T. D., Nossal, G. J. V. and Tarlinton, D M., The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol. 1996. 26: 444-448. - PubMed
  1194. Zehentmeier, S., Roth, K., Cseresnyes, Z., Sercan, Ö., Horn, K., Niesner, R. A., Chang, H.-D. et al., Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells: Cellular immune response. Eur. J. Immunol. 2014. 44: 2306-2317. - PubMed
  1195. Sanderson, R. D., Lalor, P. and Bernfield, M., B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989. 1: 27-35. - PubMed
  1196. Racine, R., Chatterjee, M. and Winslow, G M., CD11c expression identifies a population of extrafollicular antigen-specific splenic plasmablasts responsible for CD4 T-independent antibody responses during intracellular bacterial infection. J. Immunol. 2008. 181: 1375-1385. - PubMed
  1197. Van Camp, B., Durie, B. G., Spier, C., De Waele, M., Van Riet, I., Vela, E., Frutiger, Y. et al., Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood 1990. 76: 377-382. - PubMed
  1198. Heinen, A. P., Wanke, F., Moos, S., Attig, S., Luche, H., Pal, P. P., Budisa, N. et al., Improved method to retain cytosolic reporter protein fluorescence while staining for nuclear proteins: Transcription Factor Staining with Retention of Fluorescent Proteins. Cytometry 2014. 85: 621-627. - PubMed
  1199. Hoffmann, F. S., Kuhn, P.-H., Laurent, S. A., Hauck, S. M., Berer, K., Wendlinger, S. A., Krumbholz, M. et al., The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J. Immunol. 2015. 194: 542-552. - PubMed
  1200. Schaffer, S., Maul-Pavicic, A., Voll, R. E. and Chevalier, N., Optimized isolation of renal plasma cells for flow cytometric analysis. J. Immunol. Methods 2019. 474: 112628. - PubMed
  1201. Rolli, V., Gallwitz, M., Wossning, T., Flemming, A., Schamel, W. W., Zurn, C., Reth, M. et al., Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell. 2002. 10: 1057-1069. - PubMed
  1202. Toapanta, F. R., Bernal, P. J. and Sztein, M B., Diverse phosphorylation patterns of B cell receptor-associated signaling in naive and memory human B cells revealed by phosphoflow, a powerful technique to study signaling at the single cell level. Front. Cell. Infect. Microbiol. 2012. 2: 128. - PubMed
  1203. Pogue, S. L., Kurosaki, T., Bolen, J. and Herbst, R., B cell antigen receptor-induced activation of Akt promotes B cell survival and is dependent on Syk kinase. J. Immunol. 2000. 165: 1300-1306. - PubMed
  1204. Scharenberg, A. M., Humphries, L. A. and Rawlings, D J., Calcium signalling and cell-fate choice in B cells. Nat. Rev. Immunol. 2007. 7: 778-789. - PubMed
  1205. Sieger, N., Fleischer, S. J., Mei, H. E., Reiter, K., Shock, A., Burmester, G. R., Daridon, C. et al., CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation. Arthritis Rheum. 2013. 65: 770-779. - PubMed
  1206. Poe, J. C., Fujimoto, Y., Hasegawa, M., Haas, K. M., Miller, A. S., Sanford, I. G., Bock, C. B. et al., CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat. Immunol. 2004. 5: 1078-1087. - PubMed
  1207. Muller, J., Obermeier, I., Wohner, M., Brandl, C., Mrotzek, S., Angermuller, S., Maity, P. C. et al., CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl. Acad. Sci. U. S. A. 2013. 110: 12402-12407. - PubMed
  1208. Fleischer, S. J., Daridon, C., Fleischer, V., Lipsky, P. E. and Dörner, T., Enhanced tyrosine phosphatase activity underlies dysregulated B cell receptor signaling and promotes survival of human lupus B cells. Arthritis Rheumatol. 2016. 68: 1210-1221. - PubMed
  1209. Weißenberg, S. Y., Szelinski, F., Schrezenmeier, E., Stefanski, A. L., Wiedemann, A., Rincon-Arevalo, H., Welle, A. et al., Identification and characterization of post-activated B cells in systemic autoimmune diseases. Front. Immunol. 2019. 10: 2136. - PubMed
  1210. Schrezenmeier, E., Weißenberg, S. Y., Stefanski, A. L., Szelinski, F., Wiedemann, A., Lino, A. C., Dörner, T. et al., Postactivated B cells in systemic lupus erythematosus: update on translational aspects and therapeutic considerations. Curr. Opin. Rheumatol. 2019. 31: 175-184. - PubMed
  1211. Takada, Y., Mukhopadhyay, A., Kundu, G. C., Mahabeleshwar, G. H., Singh, S. and Aggarwal, B B., Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J. Biol. Chem. 2003. 278: 24233-24241. - PubMed
  1212. Mauri, C. and Menon, M., Human regulatory B cells in health and disease: therapeutic potential. J. Clin. Invest. 2017. 127: 772-779. - PubMed
  1213. Meng, L., Almeida, L. N., Clauder, A. K., Lindemann, T., Luther, J., Link, C., Hofmann, K. et al., Bone Marrow Plasma Cells Modulate Local Myeloid-Lineage Differentiation via IL-10. Front. Immunol. 2019. 10: 1183. - PubMed
  1214. Chang, H. D., Helbig, C., Tykocinski, L., Kreher, S., Koeck, J., Niesner, U. and Radbruch, A., Expression of IL-10 in Th memory lymphocytes is conditional on IL-12 or IL-4, unless the IL-10 gene is imprinted by GATA-3. Eur. J. Immunol. 2007. 37: 807-817. - PubMed
  1215. Cook, L., Stahl, M., Han, X., Nazli, A., MacDonald, K. N., Wong, M. Q., Tsai, K. et al., Suppressive and gut-reparative functions of human type 1 T regulatory cells. Gastroenterology 2019. 157: 1584-1598. - PubMed
  1216. Piper, C., Pesenacker, A. M., Bending, D., Thirugnanabalan, B., Varsani, H., Wedderburn, L. R. and Nistala, K., T cell expression of granulocyte-macrophage colony-stimulating factor in juvenile arthritis is contingent upon Th17 plasticity. Arthritis Rheumatol. 2014. 66: 1955-1960. - PubMed
  1217. Heine, G., Niesner, U., Chang, H. D., Steinmeyer, A., Zugel, U., Zuberbier, T., Radbruch, A. et al., 1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur. J. Immunol. 2008. 38: 2210-2218. - PubMed
  1218. Heine, G., Drozdenko, G., Grun, J. R., Chang, H. D., Radbruch, A. and Worm, M., Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts. Eur. J. Immunol. 2014. 44: 1615-1621. - PubMed
  1219. Kumar, S., Rajkumar, S. V., Kimlinger, T., Greipp, P. R. and Witzig, T. E., CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia 2005. 19: 1466-1470. - PubMed
  1220. Vaeth, M., Kahlfuss, S. and Feske, S., CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol. 2020. 41: 878-901. - PubMed
  1221. Trebak, M. and Kinet, J P., Calcium signalling in T cells. Nat. Rev. Immunol. 2019. 19: 154-169. - PubMed
  1222. Hemon, P., Renaudineau, Y., Debant, M., Le Goux, N., Mukherjee, S., Brooks, W., Mignen, O. et al., Calcium signaling: from normal B cell development to tolerance breakdown and autoimmunity. Clin. Rev. Allergy Immunol. 2017. 53: 141-65. - PubMed
  1223. Feske, S., Wulff, H. and Skolnik, E Y., Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 2015. 33: 291-353. - PubMed
  1224. Armstrong, D. L., Erxleben, C. and White, J A., Patch clamp methods for studying calcium channels. Methods Cell Biol. 2010. 99: 183-197. - PubMed
  1225. Grynkiewicz, G., Poenie, M. and Tsien, R Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985. 260: 3440-3450. - PubMed
  1226. Minta, A. and Tsien, R. Y., Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 1989. 264: 19449-19457. - PubMed
  1227. Burchiel, S. W., Edwards, B. S., Kuckuck, F. W., Lauer, F. T., Prossnitz, E. R., Ransom, J. T., Sklar, L. A. et al., Analysis of free intracellular calcium by flow cytometry: multiparameter and pharmacologic applications. Methods 2000. 21: 221-230. - PubMed
  1228. Bailey, S. and Macardle, P J., A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux. J. Immunol. Methods 2006. 311(1-2): 220-225. - PubMed
  1229. Wendt, E. R., Ferry, H., Greaves, D. R. and Keshav, S., Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets. PLoS One 2015. 10: e0119532. - PubMed
  1230. Dong, T. X., Othy, S., Jairaman, A., Skupsky, J., Zavala, A., Parker, I., Dynes, J. L. et al., T-cell calcium dynamics visualized in a ratiometric tdTomato-GCaMP6f transgenic reporter mouse. eLife 2017. 6. - PubMed
  1231. Perez Koldenkova, V. and Nagai, T., Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim. Biophys. Acta 2013. 1833: 1787-1797. - PubMed
  1232. Foerster, C., Voelxen, N., Rakhmanov, M., Keller, B., Gutenberger, S., Goldacker, S., Thiel, J. et al., B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency. J. Immunol. 2010. 184: 7305-7313. - PubMed
  1233. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. and Healy, J I., Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997. 386: 855-858. - PubMed
  1234. Feske, S., Okamura, H., Hogan, P. G. and Rao, A., Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 2003. 311: 1117-1132. - PubMed
  1235. Freudenhammer, M., Voll, R. E., Binder, S. C., Keller, B. and Warnatz, K., Naive- and Memory-like CD21(low) B Cell Subsets Share Core Phenotypic and Signaling Characteristics in Systemic Autoimmune Disorders. J. Immunol. 2020. - PubMed
  1236. Keller, B., Zaidman, I., Yousefi, O. S., Hershkovitz, D., Stein, J., Unger, S., Schachtrup, K. et al., Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J. Exp. Med. 2016. 213: 1185-1199. - PubMed
  1237. Mason, D. Y., Jones, M. and Goodnow, C. C., Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int. Immunol. 1992. 4: 163-175. - PubMed
  1238. Phan, T. G., Amesbury, M., Gardam, S., Crosbie, J., Hasbold, J., Hodgkin, P. D., Basten, A. et al., B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 2003. 197: 845-860. - PubMed
  1239. Shih, T. A., Roederer, M. and Nussenzweig, M. C., Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat. Immunol. 2002. 3: 399-406. - PubMed
  1240. Litzenburger, T., Fassler, R., Bauer, J., Lassmann, H., Linington, C., Wekerle, H. and Iglesias, A., B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med. 1998. 188: 169-180. - PubMed
  1241. Bettelli, E., Baeten, D., Jager, A., Sobel, R. A. and Kuchroo, V. K., Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J. Clin. Invest. 2006. 116: 2393-2402. - PubMed
  1242. Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S. et al., Innate lymphoid cells - a proposal for uniform nomenclature. Nat. Rev. Immunol. 2013. 13: 145-149. - PubMed
  1243. Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S. et al., Innate Lymphoid Cells: 10 Years On. Cell 2018. 174: 1054-1066. - PubMed
  1244. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. and Salazar-Mather, T. P., Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 1999. 17: 189-220. - PubMed
  1245. Daussy, C., Faure, F., Mayol, K., Viel, S., Gasteiger, G., Charrier, E., Bienvenu, J. et al., T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 2014. 211: 563-577. - PubMed
  1246. Klose, C. S., Flach, M., Mohle, L., Rogell, L., Hoyler, T., Ebert, K., Fabiunke, C. et al., Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014. 157: 340-356. - PubMed
  1247. Sojka, D. K., Plougastel-Douglas, B., Yang, L., Pak-Wittel, M. A., Artyomov, M. N., Ivanova, Y., Zhong, C. et al., Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 2014. 3: e01659. - PubMed
  1248. Walker, J. A. and McKenzie, A. N., Development and function of group 2 innate lymphoid cells. Curr. Opin. Immunol. 2013. 25: 148-155. - PubMed
  1249. Kiss, E. A., Vonarbourg, C., Kopfmann, S., Hobeika, E., Finke, D., Esser, C. and Diefenbach, A., Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011. 334: 1561-1565. - PubMed
  1250. Lee, J. S., Cella, M., McDonald, K. G., Garlanda, C., Kennedy, G. D., Nukaya, M., Mantovani, A. et al., AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 2011. 13: 144-151. - PubMed
  1251. Qiu, J., Heller, J. J., Guo, X., Chen, Z. M., Fish, K., Fu, Y. X. and Zhou, L., The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012. 36: 92-104. - PubMed
  1252. Crellin, N. K., Trifari, S., Kaplan, C. D., Satoh-Takayama, N., Di Santo, J. P. and Spits, H., Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 2010. 33: 752-764. - PubMed
  1253. Glatzer, T., Killig, M., Meisig, J., Ommert, I., Luetke-Eversloh, M., Babic, M., Paclik, D. et al., RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity 2013. 38: 1223-1235. - PubMed
  1254. Montaldo, E., Juelke, K. and Romagnani, C., Group 3 innate lymphoid cells (ILC3s): Origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 2015. 45: 2171-2182. - PubMed
  1255. Spits, H. and Cupedo, T., Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 2012. 30: 647-675. - PubMed
  1256. Ryon, J. J., Isolation of mononuclear cells from tonsillar tissue. Curr. Protoc. Immunol. 2001. Chapter 7: Unit 7 8. - PubMed
  1257. Cella, M., Fuchs, A., Vermi, W., Facchetti, F., Otero, K., Lennerz, J. K. M., Doherty, J. M. et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009. 457: 722-725. - PubMed
  1258. Mjosberg, J. M., Trifari, S., Crellin, N. K., Peters, C. P., van Drunen, C. M., Piet, B., Fokkens, W. J. et al., Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 2011. 12: 1055-1062. - PubMed
  1259. Fuchs, A., Vermi, W., Lee, J. S., Lonardi, S., Gilfillan, S., Newberry, R. D., Cella, M. et al., Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 2013. 38: 769-781. - PubMed
  1260. Bernink, J. H., Peters, C. P., Munneke, M., te Velde, A. A., Meijer, S. L., Weijer, K., Hreggvidsdottir, H. S. et al., Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 2013. 14: 221-229. - PubMed
  1261. Hazenberg, M. D. and Spits, H., Human innate lymphoid cells. Blood 2014. 124: 700-709. - PubMed
  1262. Cupedo, T., Crellin, N. K., Papazian, N., Rombouts, E. J., Weijer, K., Grogan, J. L., Fibbe, W. E. et al., Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 2009. 10: 66-74. - PubMed
  1263. Marquardt, N., Beziat, V., Nystrom, S., Hengst, J., Ivarsson, M. A., Kekalainen, E., Johansson, H. et al., Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 2015. 194: 2467-2471. - PubMed
  1264. Vacca, P., Montaldo, E., Croxatto, D., Loiacono, F., Canegallo, F., Venturini, P. L., Moretta, L. et al., Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol. 2015. 8: 254-264. - PubMed
  1265. Montaldo, E., Vacca, P., Chiossone, L., Croxatto, D., Loiacono, F., Martini, S., Ferrero, S. et al., Unique Eomes(+) NK Cell Subsets Are Present in Uterus and Decidua During Early Pregnancy. Front. Immunol. 2015. 6: 646. - PubMed
  1266. Teunissen, M. B., Munneke, J. M., Bernink, J. H., Spuls, P. I., Res, P. C., Te Velde, A., Cheuk, S. et al., Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 2014. 134: 2351-2360. - PubMed
  1267. Lim, A. I. and Di Santo, J. P., ILC-poiesis: Ensuring tissue ILC differentiation at the right place and time. Eur. J. Immunol. 2019. 49: 11-18. - PubMed
  1268. Chen, L., Youssef, Y., Robinson, C., Ernst, G. F., Carson, M. Y., Young, K. A., Scoville, S. D. et al., CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell Developmental Pathway. Immunity 2018. 49: 464-476.e464. - PubMed
  1269. Nagasawa, M., Heesters, B. A., Kradolfer, C. M. A., Krabbendam, L., Martinez-Gonzalez, I., de Bruijn, M. J. W., Golebski, K. et al., KLRG1 and NKp46 discriminate subpopulations of human CD117(+)CRTH2(-) ILCs biased toward ILC2 or ILC3. J. Exp. Med. 2019. 216: 1762-1776. - PubMed
  1270. Mazzurana, L., Czarnewski, P., Jonsson, V., Wigge, L., Ringnér, M., Williams, T. C., Ravindran, A. et al., Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Res. 2021. 31: 554-568. - PubMed
  1271. Lim, A. I., Li, Y., Lopez-Lastra, S., Stadhouders, R., Paul, F., Casrouge, A., Serafini, N. et al., Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell 2017. 168: 1086-1100.e1010. - PubMed
  1272. Wojno, E. D., Monticelli, L. A., Tran, S. V., Alenghat, T., Osborne, L. C., Thome, J. J., Willis, C. et al., The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015. 8: 1313-1323. - PubMed
  1273. Yudanin, N. A., Schmitz, F., Flamar, A. L., Thome, J. J. C., Tait Wojno, E., Moeller, J. B., Schirmer, M. et al., Spatial and Temporal Mapping of Human Innate Lymphoid Cells Reveals Elements of Tissue Specificity. Immunity 2019. 50: 505-519.e504. - PubMed
  1274. Krabbendam, L., Nagasawa, M., Spits, H. and Bal, S. M., Isolation of Human Innate Lymphoid Cells. Curr. Protoc. Immunol. 2018. 122: e55. - PubMed
  1275. Kim, S., Iizuka, K., Kang, H. S., Dokun, A., French, A. R., Greco, S. and Yokoyama, W. M., In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 2002. 3: 523-528. - PubMed
  1276. Hayakawa, Y. and Smyth, M. J., CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 2006. 176: 1517-1524. - PubMed
  1277. Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E. and Walzer, T., Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009. 113: 5488-5496. - PubMed
  1278. Bjorkstrom, N. K., Riese, P., Heuts, F., Andersson, S., Fauriat, C., Ivarsson, M. A., Bjorklund, A. T. et al., Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010. 116: 3853-3864. - PubMed
  1279. Lopez-Verges, S., Milush, J. M., Pandey, S., York, V. A., Arakawa-Hoyt, J., Pircher, H., Norris, P. J. et al., CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010. 116: 3865-3874. - PubMed
  1280. Juelke, K., Killig, M., Luetke-Eversloh, M., Parente, E., Gruen, J., Morandi, B., Ferlazzo, G. et al., CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 2010. 116: 1299-1307. - PubMed
  1281. Sanos, S. L., Bui, V. L., Mortha, A., Oberle, K., Heners, C., Johner, C. and Diefenbach, A., ROR gamma t and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46(+) cells. Nat. Immunol. 2009. 10: 83-91. - PubMed
  1282. Satoh-Takayama, N., Vosshenrich, C. A. J., Lesjean-Pottier, S., Sawa, S., Lochner, M., Rattis, F., Mention, J. J. et al., Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46(+) Cells that Provide Innate Mucosal Immune Defense. Immunity 2008. 29: 958-970. - PubMed
  1283. Luci, C., Reynders, A., Ivanov, I. I., Cognet, C., Chiche, L., Chasson, L., Hardwigsen, J. et al., Influence of the transcription factor ROR gamma t on the development of NKp46(+) cell populations in gut and skin. Nat. Immunol. 2009. 10: 75-82. - PubMed
  1284. Fort, M. M., Cheung, J., Yen, D., Li, J., Zurawski, S. M., Lo, S., Menon, S. et al., IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001. 15: 985-995. - PubMed
  1285. Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Furusawa, J. et al., Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010. 463: 540-544. - PubMed
  1286. Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., Bucks, C. et al., Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010. 464: 1367-1370. - PubMed
  1287. Price, A. E., Liang, H. E., Sullivan, B. M., Reinhardt, R. L., Eisley, C. J., Erle, D. J. and Locksley, R. M., Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. U. S. A. 2010. 107: 11489-11494. - PubMed
  1288. Hoyler, T., Klose, C. S., Souabni, A., Turqueti-Neves, A., Pfeifer, D., Rawlins, E. L., Voehringer, D. et al., The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012. 37: 634-648. - PubMed
  1289. Serafini, N., Klein Wolterink, R. G., Satoh-Takayama, N., Xu, W., Vosshenrich, C. A., Hendriks, R. W. and Di Santo, J. P., Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J. Exp. Med. 2014. 211: 199-208. - PubMed
  1290. Sawa, S., Cherrier, M., Lochner, M., Satoh-Takayama, N., Fehling, H. J., Langa, F., Di Santo, J. P. et al., Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010. 330: 665-669. - PubMed
  1291. Rankin, L. C., Groom, J. R., Chopin, M., Herold, M. J., Walker, J. A., Mielke, L. A., McKenzie, A. N. et al., The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 2013. 14: 389-395. - PubMed
  1292. Klose, C. S., Kiss, E. A., Schwierzeck, V., Ebert, K., Hoyler, T., d'Hargues, Y., Goppert, N. et al., A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature 2013. 494: 261-265. - PubMed
  1293. Vonarbourg, C., Mortha, A., Bui, V. L., Hernandez, P. P., Kiss, E. A., Hoyler, T., Flach, M. et al., Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010. 33: 736-751. - PubMed
  1294. Paclik, D., Stehle, C., Lahmann, A., Hutloff, A. and Romagnani, C., ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice. Eur. J. Immunol. 2015. 45: 2766-2772. - PubMed
  1295. Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. and Rudensky, A. Y., Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 2015. 350: 981-985. - PubMed
  1296. Robinette, M. L., Fuchs, A., Cortez, V. S., Lee, J. S., Wang, Y., Durum, S. K., Gilfillan, S. et al., Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 2015. 16: 306-317. - PubMed
  1297. McFarland, A. P., Yalin, A., Wang, S. Y., Cortez, V. S., Landsberger, T., Sudan, R., Peng, V. et al., Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity 2021. 54: 1320-1337.e1324. - PubMed
  1298. Gury-BenAri, M., Thaiss, C. A., Serafini, N., Winter, D. R., Giladi, A., Lara-Astiaso, D., Levy, M. et al., The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome. Cell 2016. 166: 1231-1246.e1213. - PubMed
  1299. Shafiei-Jahani, P., Helou, D. G., Hurrell, B. P., Howard, E., Quach, C., Painter, J. D., Galle-Treger, L. et al., CD200-CD200R immune checkpoint engagement regulates ILC2 effector function and ameliorates lung inflammation in asthma. Nat. Commun. 2021. 12: 2526. - PubMed
  1300. Weizman, O. E., Adams, N. M., Schuster, I. S., Krishna, C., Pritykin, Y., Lau, C., Degli-Esposti, M. A. et al., ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell 2017. 171: 795-808.e712. - PubMed
  1301. Bando, J. K., Liang, H. E. and Locksley, R. M., Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 2015. 16: 153-160. - PubMed
  1302. Herberman, R. B., Nunn, M. E., Holden, H. T. and Lavrin, D H., Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 1975. 16: 230-239. - PubMed
  1303. Ljunggren, H. G. and Karre, K., In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 1990. 11: 237-244. - PubMed
  1304. Moretta, A., Bottino, C., Mingari, M. C., Biassoni, R. and Moretta, L., What is a natural killer cell? Nat. Immunol. 2002. 3: 6-8. - PubMed
  1305. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. and Ugolini, S., Functions of natural killer cells. Nat. Immunol. 2008. 9: 503-510. - PubMed
  1306. Lopez-Botet, M., Perez-Villar, J. J., Carretero, M., Rodriguez, A., Melero, I., Bellon, T., Bellón, T. et al., Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunol. Rev. 1997. 155: 165-174. - PubMed
  1307. Braud, V. M., Allan, D. S., O'Callaghan, C. A., Soderstrom, K., D'Andrea, A., Ogg, G. S., Bellón, T. et al., HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998. 391: 795-799. - PubMed
  1308. Moretta, A., Bottino, C., Vitale, M., Pende, D., Biassoni, R., Mingari, M. C., Moretta, L. et al., Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 1996. 14: 619-648. - PubMed
  1309. Parham, P., MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 2005. 5: 201-214. - PubMed
  1310. Sivori, S., Della Chiesa, M., Carlomagno, S., Quatrini, L., Munari, E., Vacca, P., Tumino, N. et al., Inhibitory Receptors and Checkpoints in Human NK Cells, Implications for the Immunotherapy of Cancer. Front. Immunol. 2020. 11: 2156. - PubMed
  1311. Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M. C., Biassoni, R. et al., Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 2001. 19: 197-223. - PubMed
  1312. Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., Yokoyama, W. M. et al., Innate or adaptive immunity? The example of natural killer cells. Science 2011. 331: 44-49. - PubMed
  1313. Raulet, D. H., Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 2003. 3: 781-790. - PubMed
  1314. Moretta, A., Sivori, S., Vitale, M., Pende, D., Morelli, L., Augugliaro, R., Bottino, C. et al., Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 1995. 182: 875-884. - PubMed
  1315. Wagtmann, N., Biassoni, R., Cantoni, C., Verdiani, S., Malnati, M. S., Vitale, M., Bottino, C. et al., Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 1995. 2: 439-449. - PubMed
  1316. Quatrini, L., Della Chiesa, M., Sivori, S., Mingari, M. C., Pende, D. and Moretta, L., Human NK cells, their receptors and function. Eur. J. Immunol. 2021. 51: 1566-1579. - PubMed
  1317. Sivori, S., Cantoni, C., Parolini, S., Marcenaro, E., Conte, R., Moretta, L. and Moretta, A., IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur. J. Immunol. 2003. 33: 3439-3447. - PubMed
  1318. Freud, A. G. and Caligiuri, M A., Human natural killer cell development. Immunol. Rev. 2006. 214: 56-72. - PubMed
  1319. Caligiuri, M. A., Zmuidzinas, A., Manley, T. J., Levine, H., Smith, K. A. and Ritz, J., Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J. Exp. Med. 1990. 171: 1509-1526. - PubMed
  1320. Carson, W. E., Fehniger, T. A. and Caligiuri, M A., CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur. J. Immunol. 1997. 27: 354-360. - PubMed
  1321. Frey, M., Packianathan, N. B., Fehniger, T. A., Ross, M. E., Wang, W. C., Stewart, C. C. et al., Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol. 1998. 161: 400-408. - PubMed
  1322. Campbell, J. J., Qin, S., Unutmaz, D., Soler, D., Murphy, K. E., Hodge, M. R., Wu, L. et al., Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 2001. 166: 6477-6482. - PubMed
  1323. Robertson, M. J., Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol. 2002. 71: 173-183. - PubMed
  1324. Lima, M., Leander, M., Santos, M., Santos, A. H., Lau, C., Queiros, M. L., Gonçalves, M. et al., Chemokine receptor expression on normal blood CD56(+) NK-Cells elucidates cell partners that comigrate during the innate and adaptive immune responses and identifies a transitional NK-Cell population. J. Immunol. Res. 2015. 2015: 839684. - PubMed
  1325. De Maria, A., Bozzano, F., Cantoni, C. and Moretta, L., Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc. Natl. Acad. Sci. U. S. A. 2011. 108: 728-732. - PubMed
  1326. Fauriat, C., EO, Long, Ljunggren, H. G. and Bryceson, Y T., Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 2010. 115: 2167-2176. - PubMed
  1327. Del Zotto, G., Antonini, F., Pesce, S., Moretta, F., Moretta, L. and Marcenaro, E., Comprehensive Phenotyping of Human PB NK Cells by Flow Cytometry. Cytometry A 2020. 97: 891-899. - PubMed
  1328. Guma, M., Angulo, A., Vilches, C., Gomez-Lozano, N. and Malats, N., Lopez-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004. 104: 3664-3671. - PubMed
  1329. Della Chiesa, M., Falco, M., Podesta, M., Locatelli, F., Moretta, L., Frassoni, F. and Moretta, A., Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood 2012. 119: 399-410. - PubMed
  1330. Malmberg, K. J., Beziat, V. and Ljunggren, H G., Spotlight on NKG2C and the human NK-cell response to CMV infection. Eur. J. Immunol. 2012. 42: 3141-3145. - PubMed
  1331. Muccio, L., Bertaina, A., Falco, M., Pende, D., Meazza, R., Lopez-Botet, M., Moretta, L. et al., Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing alphabeta+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica 2016. 101: 371-381. - PubMed
  1332. Pesce, S., Greppi, M., Tabellini, G., Rampinelli, F., Parolini, S., Olive, D., Moretta, L. et al., Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J. Allergy Clin. Immunol. 2017. 139: 335-346.e3. - PubMed
  1333. Tomescu, C., Kroll, K., Colon, K., Papasavvas, E., Frank, I., Tebas, P., Mounzer, K. et al., Identification of the predominant human NK cell effector subset mediating ADCC against HIV-infected targets coated with BNAbs or plasma from PLWH. Eur. J. Immunol. 2021. 51: 2051-2061. - PubMed
  1334. Sivori, S., Falco, M., Marcenaro, E., Parolini, S., Biassoni, R., Bottino, C., Moretta, L. et al., Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl. Acad. Sci. U. S. A. 2002. 99: 4526-4531. - PubMed
  1335. Vacca, P., Pietra, G., Falco, M., Romeo, E., Bottino, C., Bellora, F., Prefumo, F. et al., Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function. Blood 2006. 108: 4078-4085. - PubMed
  1336. Vacca, P., Vitale, C., Montaldo, E., Conte, R., Cantoni, C., Fulcheri, E., Darretta, V. et al., CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. U. S. A. 2011. 108: 2402-2407. - PubMed
  1337. Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D. et al., Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006. 12: 1065-1074. - PubMed
  1338. Fehniger, T. A., Cooper, M. A., Nuovo, G. J., Cella, M., Facchetti, F., Colonna, M., Caligiuri, M. A. et al., CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 2003. 101: 3052-3057. - PubMed
  1339. Ferlazzo, G., Thomas, D., Lin, S. L., Goodman, K., Morandi, B., Muller, W. A., Moretta, A. et al., The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004. 172: 1455-1462. - PubMed
  1340. Locatelli, F., Pende, D., Falco, M., Della Chiesa, M., Moretta, A. and Moretta, L., NK cells mediate a crucial graft-versus-leukemia effect in haploidentical-HSCT to cure high-risk acute leukemia. Trends Immunol. 2018. 39: 577-590. - PubMed
  1341. Foley, F., Cooley, S., Verneris, M. R., Pitt, M., Curtsinger, J., Luo, X., Lopez-Vergès, S. et al., Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 2012. 119: 2665-2674. - PubMed
  1342. Cichocki, F., Cooley, S., Davis, Z., DeFor, T. E., Schlums, H., Zhang, B., Brunstein, C. G. et al., CD56dimCD57+NKG2C+ NK cell expansion is associated with reduced leukemia relapse after reduced intensity HCT. Leukemia 2016. 30: 456-463. - PubMed
  1343. Walzer, T., Blery, M., Chaix, J., Fuseri, N., Chasson, L., Robbins, S. H., Jaeger, S. et al., Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. U. S. A. 2007. 104: 3384-3389. - PubMed
  1344. Carlyle, J. R., Mesci, A., Ljutic, B., Belanger, S., Tai, L. H., Rousselle, E., Troke, A. D. et al., Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J. Immunol. 2006. 176: 7511-7524. - PubMed
  1345. Crinier, A., Milpied, P., Escaliere, B., Piperoglou, C., Galluso, J., Balsamo, A., Spinelli, L. et al., High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 2018. 49: 971-986.e5. - PubMed
  1346. Huntington, N. D., Tabarias, H., Fairfax, K., Brady, J., Hayakawa, Y., Degli-Esposti, M. A., Smyth, M. J. et al., NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J. Immunol. 2007. 178: 4764-4770. - PubMed
  1347. Quatrini, L., Wieduwild, E., Escaliere, B., Filtjens, J., Chasson, L., Laprie, C., Vivier, E. et al., Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat. Immunol. 2018. 19: 954-962. - PubMed
  1348. Sciume, G., Hirahara, K., Takahashi, H., Laurence, A., Villarino, A. V., Singleton, K. L., Spencer, S. P. et al., Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 2012. 209: 2331-2338. - PubMed
  1349. Merad, M., Sathe, P., Helft, J., Miller, J. and Mortha, A., The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annu. Rev. Immunol. 2013. 31. - PubMed
  1350. Ginhoux, F. and Guilliams, M., Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 2016. 44. - PubMed
  1351. Dress, R. J., Wong, A. Y. and Ginhoux, F., Homeostatic control of dendritic cell numbers and differentiation. Immunol. Cell Biol. 2018. 96. - PubMed
  1352. Hoeffel, G. and Ginhoux, F., Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 2018. 330. - PubMed
  1353. Collin, M. and Ginhoux, F., Human dendritic cells. Semin. Cell Dev. Biol. 2019. 86. - PubMed
  1354. van Furth, R., Cohn, Z., Hirsch, J., Humphrey, J., Spector, W. and Langevoort, H., The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ 1972. 46: 845-52. - PubMed
  1355. Kapellos, T. S., Bonaguro, L., Gemünd, I., Reusch, N., Saglam, A., Hinkley, E. R., Schultze, J. L. et al., Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol. 2019. 10. - PubMed
  1356. Patel, A. A. and Yona, S., Inherited and Environmental Factors Influence Human Monocyte Heterogeneity. Front. Immunol. 2019. 10. - PubMed
  1357. Patel, A. A. and Yona, S. Phagocyte Development. In: eLS. Chichester, UK: John Wiley & Sons, Ltd; 2018. - PubMed
  1358. Patel, A. A., Ginhoux, F. and Yona, S., Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021. - PubMed
  1359. Guilliams, M., Mildner, A. and Yona, S., Developmental and Functional Heterogeneity of Monocytes. Immunity 2018. 49. - PubMed
  1360. Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N. et al., Nomenclature of monocytes and dendritic cells in blood. Blood 2010. 116. - PubMed
  1361. Patel, A. A., Zhang, Y., Fullerton, J. N., Boelen, L., Rongvaux, A., Maini, A. A., Bigley, V. et al., The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017. 214. - PubMed
  1362. Yona, S., Kim, K.-W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D. et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013. 38. - PubMed
  1363. Varol, C., Landsman, L., Fogg, D. K., Greenshtein, L., Gildor, B., Margalit, R., Kalchenko, V. et al., Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2007. 204. - PubMed
  1364. Mildner, A., Schönheit, J., Giladi, A., David, E., Lara-Astiaso, D., Lorenzo-Vivas, E., Paul, F. et al., Genomic characterization of murine monocytes reveals C/EBPβ transcription factor dependence of Ly6C − cells. Immunity 2017. 46. - PubMed
  1365. Liu, Z., Gu, Y., Chakarov, S., Bleriot, C., Kwok, I., Chen, X., Shin, A. et al., Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 2019. 178. - PubMed
  1366. Hettinger, J., Richards, D. M., Hansson, J., Barra, M. M., Joschko, A.-C., Krijgsveld, J., Feuerer, M. et al., Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 2013. 14. - PubMed
  1367. Dutertre, C.-A., Becht, E., Irac, S. E., Khalilnezhad, A., Narang, V., Khalilnezhad, S., Ng, P. Y. et al., Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity 2019. 51. - PubMed
  1368. van der Maaten, L. and Hinton, G., Visualizing Data using t-SNE. JMLR 2008. 9: 2579-605. - PubMed
  1369. See, P., Dutertre, C.-A., Chen, J., Günther, P., McGovern, N., Irac, S. E., Gunawan, M. et al., Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017. 356. - PubMed
  1370. Hambleton, S., Salem, S., Bustamante, J., Bigley, V., Boisson-Dupuis, S., Azevedo, J., Fortin, A. et al., IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 2011. 365. - PubMed
  1371. Frankenberger, M., Ekici, A. B., Angstwurm, M. W., Hoffmann, H., Hofer, T. P. J., Heimbeck, I., Meyer, P. et al., A defect of CD16-positive monocytes can occur without disease. Immunobiology 2013. 218. - PubMed
  1372. Poehlmann, H., Schefold, J. C., Zuckermann-Becker, H., Volk, H. -. D. and Meisel, C., Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit. Care 2009. 13. - PubMed
  1373. Mukherjee, R., Kanti Barman, P., Kumar Thatoi, P., Tripathy, R., Kumar Das, B. and Ravindran, B., Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci. Rep. 2015. 5. - PubMed
  1374. Cooper, D. L., Martin, S. G., Robinson, J. I., Mackie, S. L., Charles, C. J., Nam, J., Isaacs, J. D. et al., FcγRIIIa expression on monocytes in rheumatoid arthritis: role in immune-complex stimulated TNF production and non-response to methotrexate therapy. PLoS One 2012. 7. - PubMed
  1375. Silvin, A., Chapuis, N., Dunsmore, G., Goubet, A.-G., Dubuisson, A., Derosa, L., Almire, C. et al., Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 2020. 182. - PubMed
  1376. Dress, R. J. and Ginhoux, F., Monocytes and macrophages in severe COVID-19 - friend, foe or both? Immunol. & Cell Biol. 2021. - PubMed
  1377. Ginhoux, F. and Jung, S., Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014. 14. - PubMed
  1378. Geissmann, F., Jung, S. and Littman, D. R., Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties. Immunity 2003. 19. - PubMed
  1379. Metchnikoff, E. Leçons Sur La Pathologie Comparée De L'inflammation. Paris: Masson. 1892. - PubMed
  1380. Vikhanski, L. mmunity: How Elie Metchnikoff changed the course of modern medicine. Chicago Review Press. 2016. - PubMed
  1381. Gordon, S., Elie Metchnikoff: Father of natural immunity. Eur. J. Immunol. 2008. 38. - PubMed
  1382. Schulz, C., Perdiguero, E. G., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., Prinz, M. et al., A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012. 336. - PubMed
  1383. Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M. B., Leboeuf, M., Becker, C. D. et al., Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013. 38. - PubMed
  1384. Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M. F. et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010. 330. - PubMed
  1385. Epelman, S., Lavine, K. J. and Randolph, G J., Origin and Functions of Tissue Macrophages. Immunity 2014. 41. - PubMed
  1386. Bian, Z., Gong, Y., Huang, T., Lee, C. Z. W., Bian, L., Bai, Z., Shi, H. et al., Deciphering human macrophage development at single-cell resolution. Nature 2020. 582. - PubMed
  1387. Kanitakis, J., Morelon, E., Petruzzo, P., Badet, L. and Dubernard, J.-M., Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp. Dermatol. 2011. 20. - PubMed
  1388. Réu, P., Khosravi, A., Bernard, S., Mold, J. E., Salehpour, M., Alkass, K., Perl, S. et al., The lifespan and turnover of microglia in the human brain. Cell Rep. 2017. 20. - PubMed
  1389. Nayak, D. K., Zhou, F., Xu, M., Huang, J., Tsuji, M., Hachem, R., Mohanakumar, T. et al., Long-term persistence of donor alveolar macrophages in human lung transplant recipients that influences donor-specific immune responses. Am. J. Transpl. 2016. 16. - PubMed
  1390. Sharma, A., Seow, J. J. W., Dutertre, C.-A., Pai, R., Blériot, C., Mishra, A., Wong, R. M. M. et al., Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 2020. 183. - PubMed
  1391. Schulte-Schrepping, J., Reusch, N., Paclik, D., Baßler, K., Schlickeiser, S., Zhang, B., Krämer, B. et al., Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 2020. 182: 1419-1440.e23. - PubMed
  1392. Cannon, G. and Swanson, J., The macrophage capacity for phagocytosis. J. Cell Sci. 1992. 101: 907-913. - PubMed
  1393. Joffe, A. M., Bakalar, M. H. and Fletcher, D A., Macrophage phagocytosis assay with reconstituted target particles. Nat. Protoc. 2020. 15. - PubMed
  1394. Steinman, R. M. and Cohn, Z A., Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 1973. 137. - PubMed
  1395. Steinman, R. M. and Witmer, M D., Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl. Acad. Sci. 1978. 75. - PubMed
  1396. Villar, J., Salazar, M. L., Jiménez, J. M., del Campo, M., Manubens, A., Gleisner, M. A., Ávalos, I. et al., C-type lectin receptors MR and DC-SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. Eur. J. Immunol. 2021. 51. - PubMed
  1397. Steinman, R., Gutchinov, B., Witmer, M. and Nussenzweig, M., Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J. Exp. Med. 1983. 157. - PubMed
  1398. Steinman, R. M. and Nussenzweig, M C., Dendritic Cells: Features and Functions. Immunol. Rev. 1980. 53. - PubMed
  1399. Guilliams, M., Dutertre, C.-A., Scott, C. L., McGovern, N., Sichien, D., Chakarov, S., Van Gassen, S. et al., Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016. 45. - PubMed
  1400. Cisse, B., Caton, M. L., Lehner, M., Maeda, T., Scheu, S., Locksley, R., Holmberg, D. et al., Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 2008. 135. - PubMed
  1401. Ruffin, N., Gea-Mallorquí, E., Brouiller, F., Jouve, M., Silvin, A., See, P., Dutertre, C.-A. et al., Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc. Natl. Acad. Sci. 2019. 116. - PubMed
  1402. Silvin, A., Yu, C. I., Lahaye, X., Imperatore, F., Brault, J.-B., Cardinaud, S., Cardinaud, S. et al., Constitutive resistance to viral infection in human CD141 + dendritic cells. Sci. Immunol. 2017. 2. - PubMed
  1403. Bain, C. C., Scott, C. L., Uronen-Hansson, H., Gudjonsson, S., Jansson, O., Grip, O., Guilliams, M. et al., Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013. 6. - PubMed
  1404. Tamoutounour, S., Henri, S., Lelouard, H., de Bovis, B., de Haar, C., van der Woude, C. J., Woltman, A. M. et al., CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 2012. 42. - PubMed
  1405. Chong, S. Z., Evrard, M., Devi, S., Chen, J., Lim, J. Y., See, P., Zhang, Y. et al., CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J. Exp. Med. 2016. 213. - PubMed
  1406. Forni, M. F., Ramos Maia Lobba, A., Pereira Ferreira, A. H. and Sogayar, M. C., Simultaneous isolation of three different stem cell populations from murine skin. PLoS One 2015. 10. - PubMed
  1407. Helft, J. and Merad, M. Isolation of cutaneous dendritic cells. In 2010. - PubMed
  1408. Benck, C. J., Martinov, T., Fife, B. T. and Chatterjea, D., Isolation of Infiltrating Leukocytes from Mouse Skin Using Enzymatic Digest and Gradient Separation. J. Vis. Exp. 2016.. - PubMed
  1409. Briseño, C. G., Haldar, M., Kretzer, N. M., Wu, X., Theisen, D. J., KC, W., Durai, V. et al., Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep. 2016. 15. - PubMed
  1410. van Furth, R. and Cohn, Z. A., The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968. 128. - PubMed
  1411. Hoeffel, G., Wang, Y., Greter, M., See, P., Teo, P., Malleret, B., Leboeuf, M. et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012. 209. - PubMed
  1412. Jenkins, S. J. and Allen, J E., The expanding world of tissue-resident macrophages. Eur. J. Immunol. 2021. 51. - PubMed
  1413. Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., Zhang, X.-M. et al., Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 2019. 363. - PubMed
  1414. Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X.-M., Stanley, E. R. et al., Langerhans cells arise from monocytes in vivo. Nat. Immunol. 2006. 7. - PubMed
  1415. Doebel, T., Voisin, B. and Nagao, K., Langerhans Cells - The Macrophage in Dendritic Cell Clothing. Trends Immunol. 2017. 38. - PubMed
  1416. Fujiyama, S., Nakahashi-Oda, C., Abe, F., Wang, Y., Sato, K. and Shibuya, A., Identification and isolation of splenic tissue-resident macrophage sub-populations by flow cytometry. Int. Immunol. 2019. 31. - PubMed
  1417. Misharin, A V., Morales-Nebreda, L., Mutlu, G. M., Budinger, G. R. S. and Perlman, H., Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am. J. Respir. Cell Mol. Biol. 2013. 49. - PubMed
  1418. Takenaka, S., Safroneeva, E., Xing, Z. and Gauldie, J., Dendritic cells derived from murine colonic mucosa have unique functional and phenotypic characteristics. J. Immunol. 2007. 178. - PubMed
  1419. Johansson-Lindbom, B., Svensson, M., Pabst, O., Palmqvist, C., Marquez, G., Förster, R. and Agace, W. W., Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 2005. 202. - PubMed
  1420. Harusato, A., Geem, D. and Denning, T L. Macrophage Isolation from the Mouse Small and Large Intestine. In 2016. - PubMed
  1421. Gross, M., Salame, T.-M. and Jung, S., Guardians of the Gut – Murine Intestinal Macrophages and Dendritic Cells. Front. Immunol. 2015. 6. - PubMed
  1422. Caronni, N., Piperno, G. M., Simoncello, F., Romano, O., Vodret, S., Yanagihashi, Y., Dress, R. et al., TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nat. Commun. 2021. 12. - PubMed
  1423. Stutte, S., Jux, B., Esser, C. and Förster, I., CD24a Expression Levels Discriminate Langerhans Cells from Dermal Dendritic Cells in Murine Skin and Lymph Nodes. J. Invest. Dermatol. 2008. 128. - PubMed
  1424. Merad, M., Ginhoux, F. and Collin, M., Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 2008. 8. - PubMed
  1425. Rivollier, A., He, J., Kole, A., Valatas, V. and Kelsall, B L., Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 2012. 209. - PubMed
  1426. Jaitin, D. A., Adlung, L., Thaiss, C. A., Weiner, A., Li, B., Descamps, H., Lundgren, P. et al., Lipid-Associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 2019. 178. - PubMed
  1427. Wang, J., Li, D., Pan, Y., Li, J., Jiang, Q., Liu, D., Hou, Y. et al., Interleukin-34 accelerates intrauterine adhesions progress related to CX3CR1 + monocytes/macrophages. Eur. J. Immunol. 2021. - PubMed
  1428. Ji, X., Yang, L., Zhang, Z., Zhang, K., Chang, N., Zhou, X., Hou, L. et al., Sphingosine 1-phosphate/microRNA-1249-5p/MCP-1 axis is involved in macrophage-associated inflammation in fatty liver injury in mice. Eur. J. Immunol. 2020. 50. - PubMed
  1429. Schlitzer, A., Sivakamasundari, V., Chen, J., Sumatoh, H. R. B., Schreuder, J., Lum, J., Malleret, B. et al., Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 2015. 16. - PubMed
  1430. Ahad, A., Smita, S., Mishra, G. P., Biswas, V. K., Sen, K., Gupta, B., Garcin, D. et al., NCoR1 fine-tunes type-I IFN response in cDC1 dendritic cells by directly regulating Myd88-IRF7 axis under TLR9. Eur. J. Immunol. 2020. 50. - PubMed
  1431. Dress, R. J., Dutertre, C.-A., Giladi, A., Schlitzer, A., Low, I., Shadan, N. B., Tay, A. et al., Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 2019. 20. - PubMed
  1432. Smita, S., Ghosh, A., Biswas, V. K., Ahad, A., Podder, S., Jha, A., Sen, K. et al., Zbtb10 transcription factor is crucial for murine cDC1 activation and cytokine secretion. Eur. J. Immunol. 2021. 51. - PubMed
  1433. Malissen, B., Tamoutounour, S. and Henri, S., The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 2014. 14. - PubMed
  1434. Crozat, K., Tamoutounour, S., Vu Manh, T.-P., Fossum, E., Luche, H., Ardouin, L., Guilliams, M. et al., Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α + type. J. Immunol. 2011. 187. - PubMed
  1435. Gurka, S., Hartung, E., Becker, M. and Kroczek, R A., Mouse Conventional Dendritic Cells Can be Universally Classified Based on the Mutually Exclusive Expression of XCR1 and SIRPα. Front. Immunol. 2015. 6. - PubMed
  1436. Brown, C. C., Gudjonson, H., Pritykin, Y., Deep, D., Lavallée, V.-P., Mendoza, A., Fromme, R. et al., Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 2019. 179. - PubMed
  1437. Winkler, E. S., Bailey, A. L., Kafai, N. M., Nair, S., McCune, B. T., Yu, J., Fox, J. M. et al., SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 2020. 21. https://doi.org/10.1038/s41590-020-0778-2. - PubMed
  1438. Nascimento, M., Huang, S. C., Smith, A., Everts, B., Lam, W., Bassity, E., Gautier, E. L. et al., Ly6Chi Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis. PLoS Pathog. 2014. 10. https://doi.org/10.1371/journal.ppat.1004282. - PubMed
  1439. Haist, K. C., Burrack, K. S., Davenport, B. J. and Morrison, T E., Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLOS Pathog. 2017. 13. https://doi.org/10.1371/journal.ppat.1006748. - PubMed
  1440. Detavernier, A., Azouz, A., Shehade, H., Splittgerber, M., van Maele, L., Nguyen, M., Thomas, S. et al., Monocytes undergo multi-step differentiation in mice during oral infection by Toxoplasma gondii. Commun. Biol. 2019. 2. https://doi.org/10.1038/s42003-019-0718-6. - PubMed
  1441. Jordan, S., Tung, N., Casanova-Acebes, M., Chang, C., Cantoni, C., Zhang, D., Wirtz, T. H. et al., Dietary intake regulates the circulating inflammatory monocyte pool. Cell 2019. 178. https://doi.org/10.1016/j.cell.2019.07.050. - PubMed
  1442. Carmona-Rivera, C. and Kaplan, M. J., Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin. Immunopathol. 2013. 35: 455-463. - PubMed
  1443. Leppkes, M., Knopf, J., Naschberger, E., Lindemann, A., Singh, J., Herrmann, I. and Herrmann, M., Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020. 58: 102925. - PubMed
  1444. Wang, X., Qiu, L., Li, Z., Wang, X. Y. and Yi, H., Understanding the Multifaceted Role of Neutrophils in Cancer and Autoimmune Diseases. Front. Immunol. 2018. 9: 2456. - PubMed
  1445. Maueroder, C., Chaurio, R. A., Dumych, T., Podolska, M., Lootsik, M. D., Culemann, S. and Munoz, L. E., A blast without power - cell death induced by the tuberculosis-necrotizing toxin fails to elicit adequate immune responses. Cell Death Differ. 2016. 23: 1016-1025. - PubMed
  1446. Munoz, L. E., Maueroder, C., Chaurio, R., Berens, C., Herrmann, M. and Janko, C., Colourful death: six-parameter classification of cell death by flow cytometry-dead cells tell tales. Autoimmunity 2013. 46: 336-341. - PubMed
  1447. Casanova-Acebes, M., Pitaval, C., Weiss, L. A., Nombela-Arrieta, C., Chevre, R., AG, N. and Hidalgo, A., Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 2013. 153: 1025-1035. - PubMed
  1448. Maueroder, C., Mahajan, A., Paulus, S., Gosswein, S., Hahn, J., Kienhofer, D. and Leppkes, M., Menage-a-Trois: The Ratio of Bicarbonate to CO2 and the pH Regulate the Capacity of Neutrophils to Form NETs. Front. Immunol. 2016. 7: 583. - PubMed
  1449. Kienhofer, D., Hahn, J., Stoof, J., Csepregi, J. Z., Reinwald, C., Urbonaviciute, V. and Hoffmann, M. H., Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight 2017. 2. - PubMed
  1450. Kienhofer, D., Hahn, J., Schubert, I., Reinwald, C., Ipseiz, N., Lang, S. C. and Hoffmann, M. H., No evidence of pathogenic involvement of cathelicidins in patient cohorts and mouse models of lupus and arthritis. PLoS One 2014. 9: e115474. - PubMed
  1451. Schauer, C., Janko, C., Munoz, L. E., Zhao, Y., Kienhöfer, D., Frey, B. and Herrmann, M., Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 2014. 20: 511-7. - PubMed
  1452. Schorn, C., Janko, C., Latzko, M., Chaurio, R., Schett, G. and Herrmann, M., Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front. Immunol. 2012. 3: 277. - PubMed
  1453. Schorn, C., Janko, C., Munoz, L., Schulze, C., Strysio, M., Schett, G. and Herrmann, M., Sodium and potassium urate crystals differ in their inflammatory potential. Autoimmunity 2009. 42: 314-316. - PubMed
  1454. Schorn, C., Strysio, M., Janko, C., Munoz, L. E., Schett, G. and Herrmann, M., The uptake by blood-borne phagocytes of monosodium urate is dependent on heat-labile serum factor(s) and divalent cations. Autoimmunity 2010. 43: 236-238. - PubMed
  1455. Schorn, C., Frey, B., Lauber, K., Janko, C., Strysio, M., Keppeler, H. and Herrmann, M., Sodium overload and water influx activate the NALP3 inflammasome. J. Biol. Chem. 2011. 286: 35-41. - PubMed
  1456. Muñoz, L. E., Bilyy, R., Biermann, M. H., Kienhöfer, D., Maueröder, C., Hahn, J. and Herrmann, M., Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl. Acad. Sci. U. S. A. 2016. 113: E5856-E5865. - PubMed
  1457. Pieterse, E., Jeremic, I., Czegley, C., Weidner, D., Biermann, M. H., Veissi, S. and Herrmann, M., Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci. Rep. 2016. 6: 38229. - PubMed
  1458. Franz, S., Herrmann, K., Fürnrohr, B. G., Sheriff, A., Frey, B., Gaipl, U. S. and Herrmann, M., After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ. 2007. 14: 733-742. - PubMed
  1459. Franz, S., Muñoz, L. E., Heyder, P., Herrmann, M. and Schiller, M., Unconventional apoptosis of polymorphonuclear neutrophils (PMN): staurosporine delays exposure of phosphatidylserine and prevents phagocytosis by MΦ-2 macrophages of PMN. Clin. Exp. Immunol. 2015. 179: 75-84. - PubMed
  1460. Kern, P. M., Herrmann, M., Stockmeyer, B., Kalden, J. R., Valerius, T. and Repp, R., Flow cytometric discrimination between viable neutrophils, apoptotic neutrophils and eosinophils by double labelling of permeabilized blood granulocytes. J. Immunol. Methods 2000. 241(1-2): 11-18. - PubMed
  1461. Sheriff, A., Gaipl, U. S., Franz, S., Heyder, P., Voll, R. E., Kalden, J. R. and Herrmann, M., Loss of GM1 surface expression precedes annexin V-phycoerythrin binding of neutrophils undergoing spontaneous apoptosis during in vitro aging. Cytometry A 2004. 62: 75-80. - PubMed
  1462. Santos, E. W., Oliveira, D. C. D., Hastreiter, A., Silva, G.B.D., Beltran, J.S.d.O., Tsujita, M., Borelli, P. et al., Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice. Br. J. Vet. Res. Anim. Sci. 2016. 53: 138-145. - PubMed
  1463. Geering, B., Stoeckle, C., Conus, S. and Simon, H.-U., Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013. 34: 398-409. - PubMed
  1464. Borregaard, N., Neutrophils, from marrow to microbes. Immunity 2010. 33: 657-670. - PubMed
  1465. Ley, K., Hoffman, H. M., Kubes, P., Cassatella, M. A., Zychlinsky, A., Hedrick, C. C., and, Catz, S. D., Neutrophils: New insights and open questions. Sci. Immunol. 2018. 3: 1-15. - PubMed
  1466. Ng, L. G., Ostuni, R. and Hidalgo, A., Heterogeneity of neutrophils. Nat. Rev. Immunol. 2019.19: 255-265. - PubMed
  1467. Terstappen, L. W., Safford, M. and Loken, M R., Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. Leukemia 1990. 4: 657-663. - PubMed
  1468. Satake, S., Hirai, H., Hayashi, Y., Shime, N., Tamura, A., Yao, H., Yoshioka, S. et al., C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis. J. Immunol. 2012. 189: 4546-4555. - PubMed
  1469. Theilgaard-Mönch, K., Jacobsen, L. C., Borup, R., Rasmussen, T., Bjerregaard, M. D., Nielsen, F. C., Cowland, J. B. et al., The transcriptional program of terminal granulocytic differentiation. Blood 2005. 105: 1785-1796. - PubMed
  1470. Garley, M. and Jabłońska, E., Heterogeneity Among Neutrophils. Arch. Immunol. Ther. Exp. (Warsz) 2018. 66: 21-30. - PubMed
  1471. Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M., and Scapini, P., Neutrophil Diversity in Health and Disease. Trends Immunol. 2019. 40: 565-583. - PubMed
  1472. Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J. M. et al., IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015. 522: 345-348. - PubMed
  1473. Engblom, C., Pfirschke, C., Zilionis, R., Da Silva Martins, J., Bos, S. A., Courties, G., Rickelt, S. et al., Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 2017. 358. - PubMed
  1474. Youn, J.-I., Collazo, M., Shalova, I. N., Biswas, S. K. and Gabrilovich, D. I., Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 2012. 91: 167-81. - PubMed
  1475. Zhu, Y. P., Padgett, L., Dinh, H. Q., Marcovecchio, P., Blatchley, A., Wu, R., Ehinger, E. et al., Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 2018. 24: 2329-2341.e8. - PubMed
  1476. Rumpret, M., Richthofen, H. J., Linden, M., Westerlaken, G. H. A., Talavera Ormeño, C., Low, T. Y., Ovaa, H. et al., Recognition of S100 proteins by Signal Inhibitory Receptor on Leukocytes-1 negatively regulates human neutrophils. Eur. J. Immunol. 2021. eji.202149278. - PubMed
  1477. McAlpine, C. S., Kiss, M. G., Rattik, S., He, S., Vassalli, A., Valet, C., Anzai, A. et al., Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019. 566: 383-387. - PubMed
  1478. Evrard, M., Kwok, I. W. H., Chong, S. Z., Teng, K. W. W., Becht, E., Chen, J. et al., Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018. 48: 364-379.e8. - PubMed
  1479. Kwok, I., Becht, E., Xia, Y., Ng, M., Teh, Y. C., Tan, L., Evrard, M. et al., Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 2020. 53: 303-318.e5. - PubMed
  1480. Grassi, L., Pourfarzad, F., Ullrich, S., Merkel, A., Were, F., Carrillo-de-Santa-Pau, E., Yi, G. et al., Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Rep. 2018. 24: 2784-2794. - PubMed
  1481. Dinh, H. Q., Eggert, T., Meyer, M. A., Zhu, Y. P., Olingy, C. E., Llewellyn, R., Wu, R. et al., Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. Immunity 2020. 53: 319-334.e6. - PubMed
  1482. Marini, O., Costa, S., Bevilacqua, D., Calzetti, F., Tamassia, N., Spina, C., De Sabata, D. et al., Mature CD10+ and immature CD10− neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 2017. 129: 1343-1356. - PubMed
  1483. Carissimo, G., Xu, W., Kwok, I., Abdad, M. Y., Chan, Y.-H., Fong, S.-W., Puan, K. J. et al., Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun. 2020. 11: 5243. - PubMed
  1484. Bjerregaard, M. D., Jurlander, J., Klausen, P., Borregaard, N. and Cowland, J B., The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 2003. 101: 4322-4332. - PubMed
  1485. Kim, M.-H., Yang, D., Kim, M., Kim, S.-Y., Kim, D. and Kang, S.-J., A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci. Rep. 2017. 7: 39804. - PubMed
  1486. Xie, X., Shi, Q., Wu, P., Zhang, X., Kambara, H., Su, J., Yu, H. et al., Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 2020. - PubMed
  1487. Muench, D. E., Olsson, A., Ferchen, K., Pham, G., Serafin, R. A., Chutipongtanate, S. et al., Mouse models of neutropenia reveal progenitor-stage-specific defects. Nature 2020. 582: 109-14. - PubMed
  1488. Cassatella, M. A., Östberg, N. K., Tamassia, N. and Soehnlein, O., Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol. 2019. 40: 648-664. - PubMed
  1489. Mestas, J. and Hughes, C C W., Of mice and not men: differences between mouse and human immunology. J. Immunol. 2004. 172: 2731-2738. - PubMed
  1490. Teijeira, A., Garasa, S., Ochoa M del, C., Cirella, A., Olivera, I., Glez-Vaz, J., Andueza, M. P. et al., Differential Interleukin-8 thresholds for chemotaxis and netosis in human neutrophils. Eur. J. Immunol. 2021. eji.202049029. - PubMed
  1491. Hol, J., Wilhelmsen, L. and Haraldsen, G., The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J. Leukoc. Biol. 2010. 87: 501-508. - PubMed
  1492. Friedenstein, A. J., Piatetzky S., II and Petrakova, K. V., Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 1966. 16: 381-390. - PubMed
  1493. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R. et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006. 8: 315-317. - PubMed
  1494. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Deans, R. J. et al., Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005. 7: 393-395. - PubMed
  1495. Schildberg, F. A. and Donnenberg, V. S., Stromal cells in health and disease. Cytometry A 2018. 93: 871-875. - PubMed
  1496. Rojewski, M. T., Weber, B. M. and Schrezenmeier, H., Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus. Med. Hemother. 2008. 35: 168-184. - PubMed
  1497. Lv, F. J., Tuan, R. S., Cheung, K. M. and Leung, V Y., Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014. 32: 1408-1419. - PubMed
  1498. Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A. and Nikbin, B., Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006. 7: 14. - PubMed
  1499. Uder, C., Bruckner, S., Winkler, S., Tautenhahn, H. M. and Christ, B., Mammalian MSC from selected species: Features and applications. Cytometry A 2018. 93: 32-49. - PubMed
  1500. Hegyi, B., Sagi, B., Kovacs, J., Kiss, J., Urban, V. S., Meszaros, G., Monostori, E. et al., Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall. Int. Immunol. 2010. 22: 551-559. - PubMed
  1501. Sousa, B. R., Parreira, R. C., Fonseca, E. A., Amaya, M. J., Tonelli, F. M., Lacerda, S. M., Lalwani, P. et al., Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2014. 85: 43-77. - PubMed
  1502. Karantalis, V. and Hare, J M., Use of mesenchymal stem cells for therapy of cardiac disease. Circ. Res. 2015. 116: 1413-14130. - PubMed
  1503. Boxall, S. A. and Jones, E., Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012. 2012: 975871. - PubMed
  1504. Barry, F. P., Boynton, R. E., Haynesworth, S., Murphy, J. M. and Zaia, J., The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 1999. 265: 134-139. - PubMed
  1505. Undale, A. H., Westendorf, J. J., Yaszemski, M. J. and Khosla, S., Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin. Proc. 2009. 84: 893-902. - PubMed
  1506. Haddouti, E. M., Randau, T. M., Hilgers, C., Masson, W., Walgenbach, K. J., Pflugmacher, R., Burger, C. et al., Characterization and comparison of human and ovine mesenchymal stromal cells from three corresponding sources. Int. J. Mol. Sci. 2020. 21. - PubMed
  1507. Walter, S. G., Randau, T. M., Hilgers, C., Haddouti, E. M., Masson, W., Gravius, S., Burger, C. et al., Molecular and functional phenotypes of human bone marrow-derived mesenchymal stromal cells depend on harvesting techniques. Int. J. Mol. Sci. 2020. 21. - PubMed
  1508. Moravcikova, E., Meyer, E. M., Corselli, M., Donnenberg, V. S. and Donnenberg, A D., Proteomic profiling of native unpassaged and culture-expanded mesenchymal stromal cells (MSC). Cytometry A 2018. 93: 894-904. - PubMed
  1509. Haddouti, E. M., Randau, T. M., Hilgers, C., Masson, W., Pflugmacher, R., Burger, C., Gravius, S. et al., Vertebral bone marrow-derived mesenchymal stromal cells from osteoporotic and healthy patients possess similar differentiation properties in vitro. Int. J. Mol. Sci. 2020. 21. - PubMed
  1510. Cornelis, R., Hahne, S., Taddeo, A., Melchers, F., Chang, H., Radbruch, A., Cornelis, R. et al., Stromal cell-contact dependent PI3K and APRIL induced NF- k B signaling prevent mitochondrial- and ER stress induced death of memory plasma cells. Cell Rep. 2020. - PubMed
  1511. Riedel, R., Addo, R., Ferreira-gomes, M. and Heinz, G. A., Discrete populations of isotype-switched memory B lymphocytes are maintained in murine spleen and bone marrow. 2019. - PubMed
  1512. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.-I. and Nagasawa, T.. Cellular Niches Controlling B Lymphocyte Behavior within Bone Marrow during Development. Immunity 2019. 20: 707-718. - PubMed
  1513. Friedenstein, A. J., Chailakhjan, R. K. and Lalykina, K. S., The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970. 3: 393-403. - PubMed
  1514. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F. and Keiliss-Borok, I. V., Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974. 17: 331-340. - PubMed
  1515. Frenette, P. S., Pinho, S., Lucas, D. and Scheiermann, C., Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 2013. 31: 285-316. - PubMed
  1516. Pinho, S. and Frenette, P. S., Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 2019. - PubMed
  1517. Chan, C. K., Chen, C. C., Luppen, C. A., Kim, J. B., DeBoer, A. T., Wei, K., Helms, J. A. et al., Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 2009. 457: 490-494. - PubMed
  1518. Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T. et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010. 466: 829-834. - PubMed
  1519. Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T. et al., Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013. 502: 637-643. - PubMed
  1520. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. and Morrison, S. J., Leptin-receptor expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014. 15: 154-168. - PubMed
  1521. Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K. and Nagasawa, T., The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010. 33: 387-399. - PubMed
  1522. Greenbaum, A., Hsu, Y. M., Day, R. B., Schuettpelz, L. G., Christopher, M. J., Borgerding, J. N., Nagasawa, T. et al., CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013. 495: 227-230. - PubMed
  1523. Mizoguchi, T., Pinho, S., Ahmed, J., Kunisaki, Y., Hanoun, M., Mendelson, A., Ono, N. et al., Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 2014. 29: 340-349. - PubMed
  1524. Chan, C. K., Seo, E. Y., Chen, J. Y., Lo, D., McArdle, A., Sinha, R., Tevlin, R. et al., Identification and specification of the mouse skeletal stem cell. Cell 2015. 160: 285-298. - PubMed
  1525. Marecic, O., Tevlin, R., McArdle, A., Seo, E. Y., Wearda, T., Duldulao, C., Walmsley, G. G. et al., Identification and characterization of an injury-induced skeletal progenitor. Proc. Natl. Acad. Sci. U. S. A. 2015. 112: 9920-9925. - PubMed
  1526. Debnath, S., Yallowitz, A. R., McCormick, J., Lalani, S., Zhang, T., Xu, R., Li, N. et al., Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018. 562: 133-139. - PubMed
  1527. Suire, C., Brouard, N., Hirschi, K. and Simmons, P. J., Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors. Blood 2012. 119: e86-e95. - PubMed
  1528. Pinho, S., Lacombe, J., Hanoun, M., Mizoguchi, T., Bruns, I., Kunisaki, Y. and Frenette, P. S., PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 2013. 210: 1351-1367. - PubMed
  1529. Morikawa, S., Mabuchi, Y., Kubota, Y., Nagai, Y., Niibe, K., Hiratsu, E., Suzuki, S. et al., Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 2009. 206: 2483-2496. - PubMed
  1530. Houlihan, D. D., Mabuchi, Y., Morikawa, S., Niibe, K., Araki, D., Suzuki, S., Okano, H. et al., Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat. Protoc. 2012. 7: 2103-2111. - PubMed
  1531. Worthley, D. L., Churchill, M., Compton, J. T., Tailor, Y., Rao, M., Si, Y., Levin, D. et al., Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015. 160: 269-284 - PubMed
  1532. Holzwarth, K., Köhler, R., Philipsen, L., Tokoyoda, K., Ladyhina, V., Wählby, C., Niesner, R. A. et al., Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry Part A 2018. 93, 876-888. - PubMed
  1533. Boulais, P. E., Mizoguchi, T., Zimmerman, S., Nakahara, F., Vivie, J., Mar, J. C., van Oudenaarden, A. et al., The majority of CD45(-) Ter119(-) CD31(-) bone marrow cell fraction is of hematopoietic origin and contains erythroid and lymphoid progenitors. Immunity 2018. 49: 627-639.e626. - PubMed
  1534. Addo, R. K., Heinrich, F., Heinz, G. A., Schulz, D., Sercan-Alp, Ö., Lehmann, K., Tran, C. L. et al.. Single-cell transcriptomes of murine bone marrow stromal cells reveal niche-associated heterogeneity. Eur. J. Immunol. 2019. 11: 1-8. - PubMed
  1535. Morrison, S. J., Uchida, N. and Weissman, I. L., The biology of hematopoietic stem cells, Annu. Rev. Cell Dev. Biol. 1995. 11: 35-71. - PubMed
  1536. Spangrude, G. J., Brooks, D. M. and Tumas, D. B., Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function, Blood 1995. 85: 1006-1016. - PubMed
  1537. Cheshier, S. H., Morrison, S. J., Liao, X. and Weissman, I. L., In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells, Proc. Natl. Acad. Sci. U. S. A. 1999. 96: 3120-3215. - PubMed
  1538. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P. et al., Osteoblastic cells regulate the haematopoietic stem cell niche, Nature 2003. 425: 841-846. - PubMed
  1539. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K. et al., Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche, Cell 2004. 118 149-61. - PubMed
  1540. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., Ross, J. et al., Identification of the haematopoietic stem cell niche and control of the niche size, Nature 425 (2003) 836-841. - PubMed
  1541. Hofer, T., Busch, K., Klapproth, K. and Rodewald, H. R., Fate Mapping and Quantitation of Hematopoiesis In Vivo, Annu. Rev. Immunol. 2016. 34: 449-478. - PubMed
  1542. Carrelha, J., Meng, Y., Kettyle, L. M., Luis, T. C., Norfo, R., Alcolea, V., Boukarabila, H. et al., Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells, Nature 2018. 554: 106-111. - PubMed
  1543. Haas, S., Hansson, J., Klimmeck, D., Loeffler, D., Velten, L., Uckelmann, H., Wurzer, S. et al., Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors, Cell Stem Cell 2015. 17: 422-434. - PubMed
  1544. Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F. and Shaper, J. H., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells, J. Immunol. 1984. 133: 157-165. - PubMed
  1545. Kang, Y., Chao, N. J. and Aversa, F., Unmanipulated or CD34 selected haplotype mismatched transplants, Curr. Opin. Hematol. 2008. 15: 561-567. - PubMed
  1546. Wang, J., Kimura, T., Asada, R., Harada, S., Yokota, S., Kawamoto, Y., Fujimura, Y. et al., SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection, Blood 2003. 101: 2924-2931. - PubMed
  1547. Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I. and Dick, J. E., A newly discovered class of human hematopoietic cells with SCID-repopulating activity, Nat. Med. 1998. 4: 1038-1045. - PubMed
  1548. Danet, G. H., Luongo, J. L., Butler, G., Lu, M. M., Tenner, A. J., Simon, M. C. and Bonnet, D. A., C1qRp defines a new human stem cell population with hematopoietic and hepatic potential, Proc. Natl. Acad. Sci. U. S. A. 2002. 99: 10441-10445. - PubMed
  1549. Herbein, G., Sovalat, H., Wunder, E., Baerenzung, M., Bachorz, J., Lewandowski, H., Schweitzer, C. et al., Isolation and identification of two CD34+ cell subpopulations from normal human peripheral blood, Stem Cells 1994. 12: 187-197. - PubMed
  1550. Bhatia, M., Wang, J. C., Kapp, U., Bonnet, D. and Dick, J. E., Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice, Proc. Natl. Acad. Sci. U. S. A. 1997. 94: 5320-5325. - PubMed
  1551. Majeti, R., Park, C. Y. and Weissman, I. L., Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood, Cell Stem Cell 2007. 1: 635-645. - PubMed
  1552. Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I. and Dick, J. E., Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment, Science 2011. 333: 218-221. - PubMed
  1553. Cosgun, K. N., Rahmig, S., Mende, N., Reinke, S., Hauber, I., Schafer, C., Petzold, A. et al., Kit regulates HSC engraftment across the human-mouse species barrier, Cell Stem Cell 2014. 15: 227-38. - PubMed
  1554. Fares, I., Chagraoui, J., Lehnertz, B., MacRae, T., Mayotte, N., Tomellini, E., Aubert, L. et al., EPCR expression marks UM171-expanded CD34(+) cord blood stem cells, Blood 2017. 129: 3344-3351. - PubMed
  1555. Balazs, A. B., Fabian, A. J., Esmon, C. T. and Mulligan, R. C., Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow, Blood 2006. 107 2317-2321. - PubMed
  1556. Iwasaki, H., Arai, F., Kubota, Y., Dahl, M. and Suda, T., Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver, Blood 2010 116: 544-553. - PubMed
  1557. Medvinsky, A., Rybtsov, S. and Taoudi, S., Embryonic origin of the adult hematopoietic system: advances and questions, Development 2011. 138: 1017-1031. - PubMed
  1558. Kajikhina, K., Melchers, F. and Tsuneto, M., Chemokine polyreactivity of IL7Ralpha+CSF-1R+ lympho-myeloid progenitors in the developing fetal liver, Sci. Rep. 2015. 5: 12817. - PubMed
  1559. Mikkola, H. K. and Orkin, S. H., The journey of developing hematopoietic stem cells, Development 2006. 133: 3733-3744. - PubMed
  1560. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C. and Morrison, S. J., SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells, Cell 2005. 121: 1109-1121. - PubMed
  1561. Papathanasiou, P., Attema, J. L., Karsunky, H., Xu, J., Smale, S. T. and Weissman, I. L., Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150, Stem Cells 2009. 27: 2498-24508. - PubMed
  1562. Yilmaz, O. H., Kiel, M. J. and Morrison, S. J., SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity, Blood 2006. 107: 924-930. - PubMed
  1563. Wilson, A., Laurenti, E., Oser, G., van der Wath, R. C., Blanco-Bose, W., Jaworski, M., Offner, S. et al., Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair, Cell 2008. 135: 1118-1129. - PubMed
  1564. Osawa, M., Hanada, K., Hamada, H. and Nakauchi, H., Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell, Science 1996. 273: 242-245. - PubMed
  1565. Pei, W., Feyerabend, T. B., Rossler, J., Wang, X., Postrach, D., Busch, K., Rode, I. et al., Polylox barcoding reveals haematopoietic stem cell fates realized in vivo, Nature 2017. 548: 456-460. - PubMed
  1566. Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M., Reth, M. et al., Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 2015 518: 542-546. - PubMed
  1567. Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., Garner, H. et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature 2015. 518: 547-551. - PubMed
  1568. Tornack, J., Reece, S. T., Bauer, W. M., Vogelzang, A., Bandermann, S., Zedler, U., Stingl, G. et al., Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis, PLoS One 2017. 12: e0169119. - PubMed
  1569. Spangrude, G. J., Heimfeld, S. and Weissman, I. L., Purification and characterization of mouse hematopoietic stem cells, Science 1988. 241: 58-62. - PubMed
  1570. Ikuta, K. and Weissman, I. L., Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation, Proc. Natl. Acad. Sci. U. S. A. 1992. 89: 1502-1506. - PubMed
  1571. Morrison, S. J. and Weissman, I. L., The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype, Immunity 1994. 1: 661-673. - PubMed
  1572. Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y. and Suda, T., In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 1992. 80: 3044-3050. - PubMed
  1573. Oguro, H., Ding, L. and Morrison, S. J., SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors, Cell Stem Cell 2013. 13: 102-116. - PubMed
  1574. Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I. et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype, Nat. Med. 2001. 7: 1028-1034. - PubMed
  1575. Ergen, A. V., Jeong, M., Lin, K. K., Challen, G. A. and Goodell, M. A., Isolation and characterization of mouse side population cells, Methods Mol. Biol. 2013. 946: 151-162. - PubMed
  1576. Lu, R., Neff, N. F., Quake, S. R. and Weissman, I. L., Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 2011. 29: 928-933. - PubMed
  1577. Bystrykh, L. V., de Haan, G. and Verovskaya, E., Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells, Methods Mol. Biol. 2014. 1185: 345-360. - PubMed
  1578. Kawano, Y., Petkau, G., Stehle, C., Durek, P., Heinz, G. A., Tanimoto, K., Karasuyama, H. et al., Stable lines and clones of long-term proliferating normal, genetically unmodified murine common lymphoid progenitors, Blood 2018. 131: 2026-2035. - PubMed
  1579. Knapp, D. J., Hammond, C. A., Miller, P. H., Rabu, G. M., Beer, P. A., Ricicova, M., Lecault, V. et al., Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells, Stem Cell Rep. 2017. 8: 152-162. - PubMed
  1580. Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H. et al., Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells, Cell 2013. 154: 1112-1126. - PubMed
  1581. Zuckerman, K. S., Sullivan, R. and Quesenberry, P. J., Effects of actinomycin D in vivo on murine erythroid stem cells, Blood 1978. 51: 957-969. - PubMed
  1582. Galluzzi, L., Vacchelli, E., Bravo-San, P. J. M., Buqué, A., Senovilla, L., Baracco, E. E., Bloy, N., et al, Classification of current anticancer immunotherapies. Oncotarget 2014. 30: 12472-12508. - PubMed
  1583. Hanahan, D. and Weinberg, R. A., Hallmarks of cancer: The next generation. Cell 2011. 144: 646-674. S0092-8674(11)00127-9. - PubMed
  1584. Lansdorp, P. M., Sutherland, H. J. and Eaves, C. J., Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J. Exp. Med. 1990. 172: 363-366.90293702. - PubMed
  1585. van Dongen, J. J., Lhermitte, L., Böttcher, S., Almeida, J., van der Velden, V. H., Flores-Montero, J., Rawstron, A., et al, EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012. 26: 1908-1975. - PubMed
  1586. Streitz, M., Miloud, T., Kapinsky, M., Reed, M. R., Magari, R., Geissler, E. K., Hutchinson, J. A., et al, Standardization of whole blood immune phenotype monitoring for clinical trials: Panels and methods from the ONE study. Transplant. Res. 2013. 2: 17-1440-2-17. - PubMed
  1587. Dranoff, G., Experimental mouse tumour models: What can be learnt about human cancer immunology? Nat. Rev. Immunol. 2011. 12: 61-66. - PubMed
  1588. Morton, J. J., Bird, G., Refaeli, Y. and Jimeno, A., Humanized mouse xenograft models: Narrowing the tumor-microenvironment gap. Cancer Res. 2016. 76: 6153-6158. 0008-5472.CAN-16-1260. - PubMed
  1589. Alix-Panabières, C. and Pantel, K., Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014. 14: 623-631. - PubMed
  1590. Lopresti, A., Malergue, F., Bertucci, F., Liberatoscioli, M. L., Garnier, S., DaCosta, Q., Finetti, P., et al, Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight 2019. 5: e128180. - PubMed
  1591. Schumacher, T. N. and Schreiber, R. D., Neoantigens in cancer immunotherapy. Science 2015. 348: 69-74. - PubMed
  1592. Grizzi, F., Mirandola, L., Qehajaj, D., Cobos, E., Figueroa, J. A. and Chiriva-Internati, M., Cancer-testis antigens and immunotherapy in the light of cancer complexity. Int. Rev. Immunol. 2015. 34: 143-153. - PubMed
  1593. Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. and van Hall, T., The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016. 39: 44-51. S0952-7915(15)00173-9. - PubMed
  1594. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. and Jung, H., Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 2013. 31: 413-441. - PubMed
  1595. Sers, C., Kuner, R., Falk, C. S., Lund, P., Sueltmann, H., Braun, M., Buness, A., et al, Down-regulation of HLA class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int. J. Cancer 2009. 125: 1626-39. - PubMed
  1596. Luo, Z., Wu, R. R., Lv, L., Li, P., Zhang, L. Y., Hao, Q. L. and Li, W., Prognostic value of CD44 expression in non-small cell lung cancer: A systematic review. Int. J. Clin. Exp. Pathol. 2014. 7: 3632-3646. - PubMed
  1597. Paulis, Y. W., Huijbers, E. J., van der Schaft, D. W., Soetekouw, P. M., Pauwels, P., Tjan-Heijnen, V. C. and Griffioen, A. W., CD44 enhances tumor aggressiveness by promoting tumor cell plasticity. Oncotarget 2015. 6: 19634-19646. 3839. - PubMed
  1598. Weng, Y. R., Cui, Y. and Fang, J. Y., Biological functions of cytokeratin 18 in cancer. Mol. Cancer Res. 2012. 10: 485-493. - PubMed
  1599. Appert-Collin, A., Hubert, P., Crémel, G. and Bennasroune, A., Role of ErbB receptors in cancer cell migration and invasion. Front. Pharmacol. 2015. 6: 283. - PubMed
  1600. Park, J. W., Lee, J. K., Phillips, J. W., Huang, P., Cheng, D., Huang, J. and Witte, O. N., Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl. Acad. Sci. U. S. A. 2016. 113: 4482-4487. - PubMed
  1601. Hruban, R. H. and Fukushima, N., Pancreatic adenocarcinoma: Update on the surgical pathology of carcinomas of ductal origin and PanINs. Mod. Pathol. 2007. 20: S61-S70. 3800685 - PubMed
  1602. Dubois, S. G., Epling, C. L., Teague, J., Matthay, K. K. and Sinclair, E., Flow cytometric detection of ewing sarcoma cells in peripheral blood and bone marrow. Pediatr. Blood Cancer 2010. 54: 13-18. - PubMed
  1603. Avey, D., Brewers, B. and Zhu, F., Recent advances in the study of kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol. Sin. 2015. 30: 130-145. - PubMed
  1604. Deel, M. D., Li, J. J., Crose, L. E. and Linardic, C. M., A review: Molecular aberrations within hippo signaling in bone and soft-tissue sarcomas. Front. Oncol. 2015. 5: 190. - PubMed
  1605. Sullivan, R. J., The role of mitogen-activated protein targeting in melanoma beyond BRAFV600. Curr. Opin. Oncol. 2016. 28: 185-191. - PubMed
  1606. Sucker, A., Zhao, F., Real, B., Heeke, C., Bielefeld, N., Maβen, S., Horn, S., et al, Genetic evolution of T-cell resistance in the course of melanoma progression. Clin. Cancer Res. 2014. 20: 6593-6604. - PubMed
  1607. Lakshmikanth, T., Burke, S., Ali, T. H., Kimpfler, S., Ursini, F., Ruggeri, L., Capanni, M., et al, NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest. 2009. 119: 1251-1263. - PubMed
  1608. Binder, D. C., Davis, A. A. and Wainwright, D. A., Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology 2015. 5: e1082027. - PubMed
  1609. Razavi, S. M., Lee, K. E., Jin, B. E., Aujla, P. S., Gholamin, S. and Li, G., Immune evasion strategies of glioblastoma. Front. Surg. 2016. 3: 11. - PubMed
  1610. Seifert, M., Garbe, M., Friedrich, B., Mittelbronn, M. and Klink, B., Comparative transcriptomics reveals similarities and differences between astrocytoma grades. BMC Cancer 2015. 15: 952-015-1939-9. - PubMed
  1611. Olson, B., Li, Y., Lin, Y., Liu, E. T. and Patnaik, A., Mouse models for cancer immunotherapy research. Cancer Discov. 2018. 8: 1358-1365. - PubMed
  1612. Chulpanova, D. S., Kitaeva, K. V., Rutland, C. S., Rizvanov, A. A. and Solovyeva, V. V., Mouse tumor models for advanced cancer immunotherapy. Int. J. Mol. Sci. 2020. 21: 4118. - PubMed
  1613. Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., van de Lagemaat, L. N. et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012. 489: 391. - PubMed
  1614. Mink, J. W., Blumenschine, R. J. and Adams, D B., Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1981. 241: R203-R212. - PubMed
  1615. Lake, B. B., Ai, R., Kaeser, G. E., Salathia, N. S., Yung, Y. C., Liu, R., Wildberg, A. et al., Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016. 352: 1586-1590. - PubMed
  1616. Bradl, M. and Lassmann, H., Oligodendrocytes: biology and pathology. Acta Neuropathologica 2010. 119: 37-53. - PubMed
  1617. Sofroniew, M. V. and Vinters, H V., Astrocytes: biology and pathology. Acta Neuropathologica 2010. 119: 7-35. - PubMed
  1618. Bergström, T. and Forsberg-Nilsson, K., Neural stem cells: brain building blocks and beyond. Upsala J. Med. Sci. 2012. 117: 132-142. - PubMed
  1619. Goldmann, T., Wieghofer, P., Jordão, M. J. C., Prutek, F., Hagemeyer, N., Frenzel, K., Amann, L. et al., Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 2016. 17: 797-805. - PubMed
  1620. Ginhoux, F. and Merad, M., Ontogeny and homeostasis of Langerhans cells. Immunol. Cell Biol. 2010. 88: 387-392. - PubMed
  1621. Steinbach, K., Vincenti, I., Kreutzfeldt, M., Page, N., Muschaweckh, A., Wagner, I., Drexler, I. et al., Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med. 2016. 213: 1571-1587. - PubMed
  1622. Kantzer, G., Boutin, C., Herzig, I. D., Wittwer, C., Reiß, S., Tiveron, M. C., Drewes, J. et al., Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 2017. 65: 990-1004. - PubMed
  1623. Batiuk, M. Y., de Vin, F., Duque, S. I., Li, C., Saito, T., Saido, T., Fiers, M. et al., An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J. Biol. Chem. 2017. 292: 8874-8891. - PubMed
  1624. Lin, C.-C. J., Yu, K., Hatcher, A., Huang, T.-.W., Lee, H. K., Carlson, J., Weston, M. C. et al., Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 2017. 20: 396. - PubMed
  1625. McCullough, K. M., Choi, D., Guo, J., Zimmerman, K., Walton, J., Rainnie, D. G., Ressler, K. J. et al., Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat. Commun. 2016. 7: 13149. - PubMed
  1626. Blanco-Centurion, C., Bendell, E., Zou, B., Sun, Y., Shiromani, P. J. and Liu, M., VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep. 2018. 4: 44-49. - PubMed
  1627. Daigle, T. L., Madisen, L., Hage, T. A., Valley, M. T., Knoblich, U., Larsen, R. S., Takeno, M. M. et al., A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 2018. 174: 465-80.e22. - PubMed
  1628. Lobo, M. K., Karsten, S. L., Gray, M., Geschwind, D. H. and Yang, X W., FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat. Neurosci. 2006. 9: 443-452. - PubMed
  1629. Martin, D., Xu, J., Porretta, C. and Nichols, C D., Neurocytometry: Flow Cytometric Sorting of Specific Neuronal Populations from Human and Rodent Brain. ACS Chem. Neurosci. 2017. 8: 356-367. - PubMed
  1630. Cai, X., Evrony, G. D., Lehmann, H. S., Elhosary, P. C., Mehta, B. K., Poduri, A., Walsh, C. A. et al., Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 2014. 8: 1280-1289. - PubMed
  1631. Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J. J. et al., Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 2012. 151: 483-96. - PubMed
  1632. Girdhar, K., Hoffman, G. E., Jiang, Y., Brown, L., Kundakovic, M., Hauberg, M. E., Francoeur, N. J. et al., Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat. Neurosci. 2018. 21: 1126-1136. - PubMed
  1633. Matevossian, A. and Akbarian, S., Neuronal nuclei isolation from human postmortem brain tissue. J. Vis. Exp.: JoVE 2008. . - PubMed
  1634. McCarthy, K. D. and de Vellis, J., Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 1980. 85: 890-902. - PubMed
  1635. Seiwa, C., Kojima-Aikawa, K., Matsumoto, I. and Asou, H., CNS myelinogenesis in vitro: Myelin basic protein deficient shiverer oligodendrocytes. J. Neurosci. Res. 2002. 69: 305-317. - PubMed
  1636. Barres, B. A., Hart, I. K., Coles, H. S. R., Burne, J. F., Voyvodic, J. T., Richardson, W. D., Raff, M. C. et al., Cell death and control of cell survival in the oligodendrocyte lineage. Cell 1992. 70: 31-46. - PubMed
  1637. Yang, Z., Watanabe, M. and Nishiyama, A., Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J. Neurosci. Methods 2005. 149: 50-56. - PubMed
  1638. Madhavan, M., Nevin, Z. S., Shick, H. E., Garrison, E., Clarkson-Paredes, C., Karl, M., Clayton, B. L. L. et al., Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 2018. 15: 700-6. - PubMed
  1639. Robinson, A. P., Rodgers, J. M., Goings, G. E. and Miller, S D., Characterization of oligodendroglial populations in mouse demyelinating disease using flow cytometry: clues for MS pathogenesis. PLoS One 2014. 9:e107649. - PubMed
  1640. Zhang, Y., Sloan Steven, A., Clarke Laura, E., Caneda, C., Plaza Colton, A., Blumenthal Paul, D., Vogel, H. et al., Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016. 89: 37-53. - PubMed
  1641. Nott, A., Holtman, I. R., Coufal, N. G., Schlachetzki, J. C. M., Yu, M., Hu, R., Han, C. Z. et al., Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 2019. 366: 1134-1139. - PubMed
  1642. Deng, Y., Kim, B., He, X., Kim, S., Lu, C., Wang, H., Cho, S.-G. et al., Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP. Genesis (New York, NY: 2000) 2014. 52: 341-9. - PubMed
  1643. Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B., Nowak, N. J. et al., A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003. 425: 917-925. - PubMed
  1644. Hughes, E. G., Kang, S. H., Fukaya, M. and Bergles, D E., Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 2013. 16: 668-676. - PubMed
  1645. Sedgwick, J. D., Schwender, S., Imrich, H., Dörries, R., Butcher, G. W. and ter Meulen, V., Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. 1991. 88: 7438-7442. - PubMed
  1646. Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., Littman, D. R. et al., Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 2000. 20: 4106-4114. - PubMed
  1647. Bennett, M. L., Bennett, F. C., Liddelow, S. A., Ajami, B., Zamanian, J. L., Fernhoff, N. B., Mulinyawe, S. B. et al., New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. U. S. A. 2016. 113: E1738-E1746. - PubMed
  1648. Korin, B., Ben-Shaanan, T. L., Schiller, M., Dubovik, T., Azulay-Debby, H., Boshnak, N. T., Koren, T. et al., High-dimensional, single-cell characterization of the brain's immune compartment. Nat. Neurosci. 2017. 20: 1300-1309. - PubMed
  1649. Mrdjen, D., Hartmann, F. J. and Becher, B., High Dimensional Cytometry of Central Nervous System Leukocytes During Neuroinflammation. Methods Mol. Biol. (Clifton, NJ) 2017. 1559: 321-332. - PubMed
  1650. Ajami, B., Samusik, N., Wieghofer, P., Ho, P. P., Crotti, A., Bjornson, Z., Prinz, M. et al., Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 2018. 21: 541-551. - PubMed
  1651. Mrdjen, D., Pavlovic, A., Hartmann, F. J., Schreiner, B., Utz, S. G., Leung, B. P., Lelios, I. et al., High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health. Aging Dis. Immun. 2018. 48: 599. - PubMed
  1652. Bottcher, C., Schlickeiser, S., Sneeboer, M. A. M., Kunkel, D., Knop, A., Paza, E., Fidzinski, P. et al., Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 2019. 22: 78-90. - PubMed
  1653. Urban, S. L., Jensen, I. J., Shan, Q., Pewe, L. L., Xue, H. H., Badovinac, V. P., Harty, J. T. et al., Peripherally induced brain tissue-resident memory CD8(+) T cells mediate protection against CNS infection. Nat. Immunol. 2020. 21: 938-49. - PubMed
  1654. Ribeiro, M., Brigas, H. C., Temido-Ferreira, M., Pousinha, P. A., Regen, T., Santa, C., Coelho, J. E. et al., Meningeal gammadelta T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 2019. 4. - PubMed
  1655. Gate, D., Saligrama, N., Leventhal, O., Yang, A. C., Unger, M. S., Middeldorp, J., Chen, K. et al., Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature 2020. 577: 399-404. - PubMed
  1656. Romero-Suarez, S., Del Rio Serrato, A., Bueno, R. J., Brunotte-Strecker, D., Stehle, C., Figueiredo, C. A., Hertwig, L. et al., The central nervous system contains ILC1s that differ from NK Cells in the response to inflammation. Front. Immunol. 2019. 10: 2337. - PubMed
  1657. Jin, W. N., Shi, K., He, W., Sun, J. H., Van Kaer, L., Shi, F. D., Liu, Q. et al., Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 2021. 24: 61-73. - PubMed
  1658. Probstel, A. K., Zhou, X., Baumann, R., Wischnewski, S., Kutza, M., Rojas, O. L., Sellrie, K. et al., Gut microbiota-specific IgA(+) B cells traffic to the CNS in active multiple sclerosis. Sci. Immunol. 2020. 5. - PubMed
  1659. Smolders, J., Remmerswaal, E. B., Schuurman, K. G., Melief, J., van Eden, C. G., van Lier, R. A., Huitinga, I. et al., Characteristics of differentiated CD8(+) and CD4 (+) T cells present in the human brain. Acta Neuropathol. 2013. 126: 525-535. - PubMed
  1660. Ecker, J. R., Geschwind, D. H., Kriegstein, A. R., Ngai, J., Osten, P., Polioudakis, D., Regev, A. et al., The BRAIN initiative cell census consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 2017. 96: 542-557. - PubMed
  1661. Tham, C. S., Lin, F. F., Rao, T. S., Yu, N. and Webb, M., Microglial activation state and lysophospholipid acid receptor expression. Int. J. Dev. Neurosci. 2003. 21: 431-443. - PubMed
  1662. Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E. et al., CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007. 67: 5727-5736. - PubMed
  1663. Foo, L. C., Allen, N. J., Bushong, E. A., Ventura, P. B., Chung, W. S., Zhou, L., Cahoy, J. D. et al., Development of a method for the purification and culture of rodent astrocytes. Neuron 2011. 71: 799-811. - PubMed
  1664. Pfisterer, U., Petukhov, V., Demharter, S., Meichsner, J., Thompson, J. J., Batiuk, M. Y., Asenjo-Martinez, A. et al., Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 2020. 11: 5038. - PubMed
  1665. Tsai, H.-.H., Li, H., Fuentealba, L. C., Molofsky, A. V., Taveira-Marques, R., Zhuang, H., Tenney, A. et al., Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science (New York, NY) 2012. 337: 358-362. - PubMed
  1666. Guttenplan, K. A. and Liddelow, S A., Astrocytes and microglia: Models and tools. J. Exp. Med. 2018. jem.20180200. - PubMed
  1667. Moussaud, S. and Draheim, H J., A new method to isolate microglia from adult mice and culture them for an extended period of time. J. Neurosci. Methods 2010. 187: 243-253. - PubMed
  1668. Ficht, X. and Iannacone, M., Immune surveillance of the liver by T cells. Sci. Immunol. 2020. 5: eaba2351. - PubMed
  1669. Horst, A. K., Kumashie, K. G., Neumann, K., Diehl, L. and Tiegs, G., Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol. Immunol. 2021. 18: 92-111. - PubMed
  1670. Gill, U. S., Pallett, L. J., Thomas, N., Burton, A. R., Patel, A. A., Yona, S., Kennedy, P. T. F. et al., Fine needle aspirates comprehensively sample intrahepatic immunity. Gut 2019. 68: 1493-1503. - PubMed
  1671. Sprengers, D., van der Molen, R. G., Kusters, J. G., Kwekkeboom, J., van der Laan, L. J., Niesters, H. G., Kuipers, E. J. et al., Flow cytometry of fine-needle-aspiration biopsies: a new method to monitor the intrahepatic immunological environment in chronic viral hepatitis. J. Viral Hepatitis 2005. 12: 507-512. - PubMed
  1672. Pembroke, T., Gallimore, A. and Godkin, A., Tracking the kinetics of intrahepatic immune responses by repeated fine needle aspiration of the liver. J. Immunol. Methods 2015. 424: 131-135. - PubMed
  1673. Pallett, L. J., Davies, J., Colbeck, E. J., Robertson, F., Hansi, N., Easom, N. J. W., Burton, A. R. et al., IL-2 high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection J. Exp. Med. 2017. 214: 1567-1580. - PubMed
  1674. Stegmann, K. A., Robertson, F., Hansi, N., Gill, U., Pallant, C., Christophides, T., Pallett, L. J. et al., CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci. Rep. 2016. 6: 26157. - PubMed
  1675. Gao, B., Radaeva, S. and Park, O., Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 2009. 86: 513-28. - PubMed
  1676. Niemeyer, M., Darmoise, A., Mollenkopf, H. J., Hahnke, K., Hurwitz, R., Besra, G. S., Schaible, U. E. et al., Natural killer T-cell characterization through gene expression profiling: An account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology 2008. 123: 45-56. - PubMed
  1677. Pang, D. J., Neves, J. F., Sumaria, N. and Pennington, D J., Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology 2012. 136: 283-90. - PubMed
  1678. Golubovskaya, V. and Wu, L., Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 2016. 8: pii: E36. - PubMed
  1679. Cuff, A. O., Robertson, F. P., Stegmann, K. A., Pallett, L. J., Maini, M. K. and Davidson, B. R., Male V. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. J. Immunol. 2016. 197: 4283-4291. - PubMed
  1680. Harmon, C., Robinson, M. W., Fahey, R., Whelan, S., Houlihan, D. D., Geoghegan, J. and O'Farrelly, C., Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver. Eur. J. Immunol. 2016. 46: 2111-2120. - PubMed
  1681. Peng, H., Jiang, X., Chen, Y., Sojka, D. K., Wei, H., Gao, X., Sun, R. et al., Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 2013. 123: 1444-1456. - PubMed
  1682. Zhou, J., Peng, H., Li, K., Qu, K., Wang, B., Wu, Y., Ye, L. et al., Liver-Resident NK Cells Control Antiviral Activity of Hepatic T Cells via the PD-1-PD-L1 Axis. Immunity 2019. 50: 403-417.e4. - PubMed
  1683. Peng, H. and Sun, R., Liver-resident NK cells and their potential functions. Cell Mol. Immunol. 2017. 14: 890-894. - PubMed
  1684. Kenna, T., Golden-Mason, L., Porcelli, S. A., Koezuka, Y., Hegarty, J. E., O'Farrelly, C. and Doherty, D G., NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 2003. 171: 1775-1779. - PubMed
  1685. Huang, W., He, W., Shi, X., He, X., Dou, L. and Gao, Y., The Role of CD1d and MR1 Restricted T Cells in the Liver. Front. Immunol. 2018. 9: 2424. - PubMed
  1686. Rajoriya, N., Fergusson, J. R., Leithead, J. A. and Klenerman, P., Gamma Delta T-lymphocytes in Hepatitis C and Chronic Liver Disease. Front. Immunol. 2014. 5: 400. - PubMed
  1687. Swadling, L., Pallett, L. J., Diniz, M. O., Baker, J. M., Amin, O. E., Stegmann, K. A., Burton, A. R. et al., Human Liver Memory CD8+ T Cells Use Autophagy for Tissue Residence. Cell Rep. 2020. 30: 687-698.e6. - PubMed
  1688. Stelma, F., de Niet, A., Sinnige, M. J., van Dort, K. A., van Gisbergen, K. P. J. M., Verheij, J., van Leeuwen, E. M. M. et al., Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci. Rep. 2017. 7: 6172. - PubMed
  1689. Fernandez-Ruiz, D., Ng, W. Y., Holz, L. E., Ma, J. Z., Zaid, A., Wong, Y. C., Lau, L. S. et al., Liver-Resident Memory CD8+ T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity 2016. 45: 889-902. - PubMed
  1690. Olsen, T. M., Stone, B. C., Chuenchob, V. and Murphy, S C., Prime-and-Trap Malaria Vaccination To Generate Protective CD8+ Liver-Resident Memory T Cells. J. Immunol. 2018. 201: 1984-1993. - PubMed

Publication Types