Display options
Share it on

Phys Rev Lett. 2014 Jul 11;113(2):022301. doi: 10.1103/PhysRevLett.113.022301. Epub 2014 Jul 09.

Dielectron mass spectra from Au+Au collisions at √[s(NN)]=200  GeV.

Physical review letters

L Adamczyk, J K Adkins, G Agakishiev, M M Aggarwal, Z Ahammed, I Alekseev, J Alford, C D Anson, A Aparin, D Arkhipkin, E C Aschenauer, G S Averichev, A Banerjee, Z Barnovska, D R Beavis, R Bellwied, A Bhasin, A K Bhati, P Bhattarai, H Bichsel, J Bielcik, J Bielcikova, L C Bland, I G Bordyuzhin, W Borowski, J Bouchet, A V Brandin, S G Brovko, S Bültmann, I Bunzarov, T P Burton, J Butterworth, H Caines, M Calderón de la Barca Sánchez, D Cebra, R Cendejas, M C Cervantes, P Chaloupka, Z Chang, S Chattopadhyay, H F Chen, J H Chen, L Chen, J Cheng, M Cherney, A Chikanian, W Christie, J Chwastowski, M J M Codrington, J G Cramer, H J Crawford, X Cui, S Das, A Davila Leyva, L C De Silva, R R Debbe, T G Dedovich, J Deng, A A Derevschikov, R Derradi de Souza, S Dhamija, B di Ruzza, L Didenko, C Dilks, F Ding, P Djawotho, X Dong, J L Drachenberg, J E Draper, C M Du, L E Dunkelberger, J C Dunlop, L G Efimov, J Engelage, K S Engle, G Eppley, L Eun, O Evdokimov, R Fatemi, S Fazio, J Fedorisin, P Filip, E Finch, Y Fisyak, C E Flores, C A Gagliardi, D R Gangadharan, D Garand, F Geurts, A Gibson, M Girard, S Gliske, D Grosnick, Y Guo, A Gupta, S Gupta, W Guryn, B Haag, O Hajkova, A Hamed, L-X Han, R Haque, J W Harris, S Heppelmann, A Hirsch, G W Hoffmann, D J Hofman, S Horvat, B Huang, H Z Huang, X Huang, P Huck, T J Humanic, G Igo, W W Jacobs, H Jang, E G Judd, S Kabana, D Kalinkin, K Kang, K Kauder, H W Ke, D Keane, A Kechechyan, A Kesich, Z H Khan, D P Kikola, I Kisel, A Kisiel, D D Koetke, T Kollegger, J Konzer, I Koralt, W Korsch, L Kotchenda, P Kravtsov, K Krueger, I Kulakov, L Kumar, R A Kycia, M A C Lamont, J M Landgraf, K D Landry, J Lauret, A Lebedev, R Lednicky, J H Lee, M J LeVine, C Li, W Li, X Li, X Li, Y Li, Z M Li, L M Lima, M A Lisa, F Liu, T Ljubicic, W J Llope, R S Longacre, X Luo, G L Ma, Y G Ma, D M M D Madagodagettige Don, D P Mahapatra, R Majka, S Margetis, C Markert, H Masui, H S Matis, D McDonald, T S McShane, N G Minaev, S Mioduszewski, B Mohanty, M M Mondal, D A Morozov, M G Munhoz, M K Mustafa, B K Nandi, Md Nasim, T K Nayak, J M Nelson, L V Nogach, S Y Noh, J Novak, S B Nurushev, G Odyniec, A Ogawa, K Oh, A Ohlson, V Okorokov, E W Oldag, R A N Oliveira, M Pachr, B S Page, S K Pal, Y X Pan, Y Pandit, Y Panebratsev, T Pawlak, B Pawlik, H Pei, C Perkins, W Peryt, P Pile, M Planinic, J Pluta, D Plyku, N Poljak, J Porter, A M Poskanzer, N K Pruthi, M Przybycien, P R Pujahari, H Qiu, A Quintero, S Ramachandran, R Raniwala, S Raniwala, R L Ray, C K Riley, H G Ritter, J B Roberts, O V Rogachevskiy, J L Romero, J F Ross, A Roy, L Ruan, J Rusnak, N R Sahoo, P K Sahu, I Sakrejda, S Salur, A Sandacz, J Sandweiss, E Sangaline, A Sarkar, J Schambach, R P Scharenberg, A M Schmah, W B Schmidke, N Schmitz, J Seger, P Seyboth, N Shah, E Shahaliev, P V Shanmuganathan, M Shao, B Sharma, W Q Shen, S S Shi, Q Y Shou, E P Sichtermann, R N Singaraju, M J Skoby, D Smirnov, N Smirnov, D Solanki, P Sorensen, U G deSouza, H M Spinka, B Srivastava, T D S Stanislaus, J R Stevens, R Stock, M Strikhanov, B Stringfellow, A A P Suaide, M Sumbera, X Sun, X M Sun, Y Sun, Z Sun, B Surrow, D N Svirida, T J M Symons, A Szanto de Toledo, J Takahashi, A H Tang, Z Tang, T Tarnowsky, J H Thomas, A R Timmins, D Tlusty, M Tokarev, S Trentalange, R E Tribble, P Tribedy, B A Trzeciak, O D Tsai, J Turnau, T Ullrich, D G Underwood, G Van Buren, G van Nieuwenhuizen, J A Vanfossen, R Varma, G M S Vasconcelos, A N Vasiliev, R Vertesi, F Videbæk, Y P Viyogi, S Vokal, A Vossen, M Wada, F Wang, G Wang, H Wang, J S Wang, X L Wang, Y Wang, Y Wang, G Webb, J C Webb, G D Westfall, H Wieman, S W Wissink, R Witt, Y F Wu, Z Xiao, W Xie, K Xin, H Xu, N Xu, Q H Xu, Y Xu, Z Xu, W Yan, C Yang, Y Yang, Y Yang, Z Ye, P Yepes, L Yi, K Yip, I-K Yoo, Y Zawisza, H Zbroszczyk, W Zha, J B Zhang, J L Zhang, S Zhang, X P Zhang, Y Zhang, Z P Zhang, F Zhao, J Zhao, C Zhong, X Zhu, Y H Zhu, Y Zoulkarneeva, M Zyzak,

Affiliations

  1. AGH University of Science and Technology, Cracow, Poland.
  2. University of Kentucky, Lexington, Kentucky 40506-0055, USA.
  3. Joint Institute for Nuclear Research, Dubna 141 980, Russia.
  4. Panjab University, Chandigarh 160014, India.
  5. Variable Energy Cyclotron Centre, Kolkata 700064, India.
  6. Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia.
  7. Kent State University, Kent, Ohio 44242, USA.
  8. Ohio State University, Columbus, Ohio 43210, USA.
  9. Brookhaven National Laboratory, Upton, New York 11973, USA.
  10. Nuclear Physics Institute AS CR, 250 68 ?ež/1:108793 Prague, Czech Republic.
  11. University of Houston, Houston, Texas 77204, USA.
  12. University of Jammu, Jammu 180001, India.
  13. University of Texas, Austin, Texas 78712, USA.
  14. University of Washington, Seattle, Washington 98195, USA.
  15. Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic.
  16. SUBATECH, Nantes, France.
  17. Moscow Engineering Physics Institute, Moscow Russia.
  18. University of California, Davis, California 95616, USA.
  19. Old Dominion University, Norfolk, Virginia 23529, USA.
  20. Rice University, Houston, Texas 77251, USA.
  21. Yale University, New Haven, Connecticut 06520, USA.
  22. Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  23. Texas A&M University, College Station, Texas 77843, USA.
  24. University of Science and Technology of China, Hefei 230026, China.
  25. Shanghai Institute of Applied Physics, Shanghai 201800, China.
  26. Central China Normal University (HZNU), Wuhan 430079, China.
  27. Tsinghua University, Beijing 100084, China.
  28. Creighton University, Omaha, Nebraska 68178, USA.
  29. Cracow University of Technology, Cracow, Poland.
  30. University of California, Berkeley, California 94720, USA.
  31. Institute of Physics, Bhubaneswar 751005, India.
  32. Shandong University, Jinan, Shandong 250100, China.
  33. Institute of High Energy Physics, Protvino, Russia.
  34. Universidade Estadual de Campinas, Sao Paulo, Brazil.
  35. Indiana University, Bloomington, Indiana 47408, USA.
  36. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  37. Valparaiso University, Valparaiso, Indiana 46383, USA.
  38. Institute of Modern Physics, Lanzhou, China.
  39. University of California, Los Angeles, California 90095, USA.
  40. United States Naval Academy, Annapolis, Maryland 21402, USA.
  41. University of Illinois at Chicago, Chicago, Illinois 60607, USA.
  42. Purdue University, West Lafayette, Indiana 47907, USA.
  43. Warsaw University of Technology, Warsaw, Poland.
  44. Argonne National Laboratory, Argonne, Illinois 60439, USA.
  45. National Institute of Science Education and Research, Bhubaneswar 751005, India.
  46. Korea Institute of Science and Technology Information, Daejeon, Korea.
  47. Frankfurt Institute for Advanced Studies FIAS, Germany.
  48. Temple University, Philadelphia, Pennsylvania 19122, USA.
  49. Universidade de Sao Paulo, Sao Paulo, Brazil.
  50. Indian Institute of Technology, Mumbai 400076, India.
  51. University of Birmingham, Birmingham, United Kingdom.
  52. Michigan State University, East Lansing, Michigan 48824, USA.
  53. Pusan National University, Pusan, Republic of Korea.
  54. Institute of Nuclear Physics PAN, Cracow, Poland.
  55. University of Zagreb, Zagreb HR-10002, Croatia.
  56. University of Rajasthan, Jaipur 302004, India.
  57. Max-Planck-Institut für Physik, Munich, Germany.
  58. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
  59. Central China Normal University (HZNU), Wuhan 430079, China and Shanghai Institute of Applied Physics, Shanghai 201800, China.

PMID: 25062167 DOI: 10.1103/PhysRevLett.113.022301

Abstract

We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (|y(ee)|<1) in Au+Au collisions at √[s(NN)]=200  GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (ϕ-like)   GeV/c(2). The spectrum in the ω-like and ϕ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and ϕ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.

Publication Types