Display options
Share it on

Phys Rev Lett. 2016 Mar 18;116(11):112302. doi: 10.1103/PhysRevLett.116.112302. Epub 2016 Mar 18.

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.

Physical review letters

L Adamczyk, J K Adkins, G Agakishiev, M M Aggarwal, Z Ahammed, I Alekseev, A Aparin, D Arkhipkin, E C Aschenauer, A Attri, G S Averichev, X Bai, V Bairathi, R Bellwied, A Bhasin, A K Bhati, P Bhattarai, J Bielcik, J Bielcikova, L C Bland, I G Bordyuzhin, J Bouchet, J D Brandenburg, A V Brandin, I Bunzarov, J Butterworth, H Caines, M Calderón de la Barca Sánchez, J M Campbell, D Cebra, I Chakaberia, P Chaloupka, Z Chang, A Chatterjee, S Chattopadhyay, J H Chen, X Chen, J Cheng, M Cherney, W Christie, G Contin, H J Crawford, S Das, L C De Silva, R R Debbe, T G Dedovich, J Deng, A A Derevschikov, B di Ruzza, L Didenko, C Dilks, X Dong, J L Drachenberg, J E Draper, C M Du, L E Dunkelberger, J C Dunlop, L G Efimov, J Engelage, G Eppley, R Esha, O Evdokimov, O Eyser, R Fatemi, S Fazio, P Federic, J Fedorisin, Z Feng, P Filip, Y Fisyak, C E Flores, L Fulek, C A Gagliardi, D Garand, F Geurts, A Gibson, M Girard, L Greiner, D Grosnick, D S Gunarathne, Y Guo, S Gupta, A Gupta, W Guryn, A I Hamad, A Hamed, R Haque, J W Harris, L He, S Heppelmann, S Heppelmann, A Hirsch, G W Hoffmann, S Horvat, T Huang, X Huang, B Huang, H Z Huang, P Huck, T J Humanic, G Igo, W W Jacobs, H Jang, A Jentsch, J Jia, K Jiang, E G Judd, S Kabana, D Kalinkin, K Kang, K Kauder, H W Ke, D Keane, A Kechechyan, Z H Khan, D P Kikoła, I Kisel, A Kisiel, L Kochenda, D D Koetke, L K Kosarzewski, A F Kraishan, P Kravtsov, K Krueger, L Kumar, M A C Lamont, J M Landgraf, K D Landry, J Lauret, A Lebedev, R Lednicky, J H Lee, X Li, C Li, X Li, Y Li, W Li, T Lin, M A Lisa, F Liu, T Ljubicic, W J Llope, M Lomnitz, R S Longacre, X Luo, R Ma, G L Ma, Y G Ma, L Ma, N Magdy, R Majka, A Manion, S Margetis, C Markert, H S Matis, D McDonald, S McKinzie, K Meehan, J C Mei, N G Minaev, S Mioduszewski, D Mishra, B Mohanty, M M Mondal, D A Morozov, M K Mustafa, B K Nandi, Md Nasim, T K Nayak, G Nigmatkulov, T Niida, L V Nogach, S Y Noh, J Novak, S B Nurushev, G Odyniec, A Ogawa, K Oh, V A Okorokov, D Olvitt, B S Page, R Pak, Y X Pan, Y Pandit, Y Panebratsev, B Pawlik, H Pei, C Perkins, P Pile, J Pluta, K Poniatowska, J Porter, M Posik, A M Poskanzer, N K Pruthi, J Putschke, H Qiu, A Quintero, S Ramachandran, S Raniwala, R Raniwala, R L Ray, H G Ritter, J B Roberts, O V Rogachevskiy, J L Romero, L Ruan, J Rusnak, O Rusnakova, N R Sahoo, P K Sahu, I Sakrejda, S Salur, J Sandweiss, A Sarkar, J Schambach, R P Scharenberg, A M Schmah, W B Schmidke, N Schmitz, J Seger, P Seyboth, N Shah, E Shahaliev, P V Shanmuganathan, M Shao, A Sharma, B Sharma, M K Sharma, W Q Shen, Z Shi, S S Shi, Q Y Shou, E P Sichtermann, R Sikora, M Simko, S Singha, M J Skoby, N Smirnov, D Smirnov, W Solyst, L Song, P Sorensen, H M Spinka, B Srivastava, T D S Stanislaus, M Stepanov, R Stock, M Strikhanov, B Stringfellow, M Sumbera, B Summa, Z Sun, X M Sun, Y Sun, B Surrow, D N Svirida, Z Tang, A H Tang, T Tarnowsky, A Tawfik, J Thäder, J H Thomas, A R Timmins, D Tlusty, T Todoroki, M Tokarev, S Trentalange, R E Tribble, P Tribedy, S K Tripathy, O D Tsai, T Ullrich, D G Underwood, I Upsal, G Van Buren, G van Nieuwenhuizen, M Vandenbroucke, R Varma, A N Vasiliev, R Vertesi, F Videbæk, S Vokal, S A Voloshin, A Vossen, F Wang, G Wang, J S Wang, H Wang, Y Wang, Y Wang, G Webb, J C Webb, L Wen, G D Westfall, H Wieman, S W Wissink, R Witt, Y Wu, Z G Xiao, W Xie, G Xie, K Xin, Y F Xu, Q H Xu, N Xu, H Xu, Z Xu, J Xu, S Yang, Y Yang, Y Yang, C Yang, Y Yang, Q Yang, Z Ye, Z Ye, P Yepes, L Yi, K Yip, I-K Yoo, N Yu, H Zbroszczyk, W Zha, X P Zhang, Y Zhang, J Zhang, J Zhang, S Zhang, S Zhang, Z Zhang, J B Zhang, J Zhao, C Zhong, L Zhou, X Zhu, Y Zoulkarneeva, M Zyzak,

Affiliations

  1. AGH University of Science and Technology, FPACS, Cracow 30-059, Poland.
  2. University of Kentucky, Lexington, Kentucky 40506-0055.
  3. Joint Institute for Nuclear Research, Dubna 141 980, Russia.
  4. Panjab University, Chandigarh 160014, India.
  5. Variable Energy Cyclotron Centre, Kolkata 700064, India.
  6. Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia.
  7. Brookhaven National Laboratory, Upton, New York 11973.
  8. Central China Normal University, Wuhan, Hubei 430079.
  9. National Institute of Science Education and Research, Bhubaneswar 751005, India.
  10. University of Houston, Houston, Texas 77204.
  11. University of Jammu, Jammu 180001, India.
  12. University of Texas, Austin, Texas 78712.
  13. Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic.
  14. Nuclear Physics Institute AS CR, 250 68 Prague, Czech Republic.
  15. Kent State University, Kent, Ohio 44242.
  16. Rice University, Houston, Texas 77251.
  17. National Research Nuclear Univeristy MEPhI, Moscow 115409, Russia.
  18. Yale University, New Haven, Connecticut 06520.
  19. University of California, Davis, California 95616.
  20. Ohio State University, Columbus, Ohio 43210.
  21. Texas A&M University, College Station, Texas 77843.
  22. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800.
  23. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000.
  24. Tsinghua University, Beijing 100084.
  25. Creighton University, Omaha, Nebraska 68178.
  26. Lawrence Berkeley National Laboratory, Berkeley, California 94720.
  27. University of California, Berkeley, California 94720.
  28. Institute of Physics, Bhubaneswar 751005, India.
  29. Shandong University, Jinan, Shandong 250100.
  30. Institute of High Energy Physics, Protvino 142281, Russia.
  31. Pennsylvania State University, University Park, Pennsylvania 16802.
  32. Valparaiso University, Valparaiso, Indiana 46383.
  33. University of California, Los Angeles, California 90095.
  34. University of Illinois at Chicago, Chicago, Illinois 60607.
  35. Purdue University, West Lafayette, Indiana 47907.
  36. Warsaw University of Technology, Warsaw 00-661, Poland.
  37. Temple University, Philadelphia, Pennsylvania 19122.
  38. University of Science and Technology of China, Hefei, Anhui 230026.
  39. National Cheng Kung University, Tainan 70101.
  40. Indiana University, Bloomington, Indiana 47408.
  41. Korea Institute of Science and Technology Information, Daejeon 305-701, Korea.
  42. Wayne State University, Detroit, Michigan 48201.
  43. Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany.
  44. Argonne National Laboratory, Argonne, Illinois 60439.
  45. State University of New York, Stony Brook, New York 11794.
  46. Indian Institute of Technology, Mumbai 400076, India.
  47. Michigan State University, East Lansing, Michigan 48824.
  48. Pusan National University, Pusan 46241, Korea.
  49. Institute of Nuclear Physics PAN, Cracow 31-342, Poland.
  50. University of Rajasthan, Jaipur 302004, India.
  51. Max-Planck-Institut fur Physik, Munich 80805, Germany.
  52. World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo 11571, Egypt.
  53. United States Naval Academy, Annapolis, Maryland 21402.

PMID: 27035295 DOI: 10.1103/PhysRevLett.116.112302

Abstract

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20  GeV.

Publication Types