Display options
Share it on

Phys Rev Lett. 2018 Jul 20;121(3):032301. doi: 10.1103/PhysRevLett.121.032301.

Beam Energy Dependence of Jet-Quenching Effects in Au+Au Collisions at sqrt[s_{NN}]=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV.

Physical review letters

L Adamczyk, J R Adams, J K Adkins, G Agakishiev, M M Aggarwal, Z Ahammed, N N Ajitanand, I Alekseev, D M Anderson, R Aoyama, A Aparin, D Arkhipkin, E C Aschenauer, M U Ashraf, A Attri, G S Averichev, X Bai, V Bairathi, K Barish, A Behera, R Bellwied, A Bhasin, A K Bhati, P Bhattarai, J Bielcik, J Bielcikova, L C Bland, I G Bordyuzhin, J Bouchet, J D Brandenburg, A V Brandin, D Brown, I Bunzarov, J Butterworth, H Caines, M Calderón de la Barca Sánchez, J M Campbell, D Cebra, I Chakaberia, P Chaloupka, Z Chang, N Chankova-Bunzarova, A Chatterjee, S Chattopadhyay, J H Chen, X Chen, X Chen, J Cheng, M Cherney, W Christie, G Contin, H J Crawford, S Das, L C De Silva, R R Debbe, T G Dedovich, J Deng, A A Derevschikov, L Didenko, C Dilks, X Dong, J L Drachenberg, J E Draper, L E Dunkelberger, J C Dunlop, L G Efimov, N Elsey, J Engelage, G Eppley, R Esha, S Esumi, O Evdokimov, J Ewigleben, O Eyser, R Fatemi, S Fazio, P Federic, P Federicova, J Fedorisin, Z Feng, P Filip, E Finch, Y Fisyak, C E Flores, J Fujita, L Fulek, C A Gagliardi, D Garand, F Geurts, A Gibson, M Girard, D Grosnick, D S Gunarathne, Y Guo, S Gupta, A Gupta, W Guryn, A I Hamad, A Hamed, A Harlenderova, J W Harris, L He, S Heppelmann, S Heppelmann, A Hirsch, G W Hoffmann, S Horvat, X Huang, H Z Huang, T Huang, B Huang, T J Humanic, P Huo, G Igo, W W Jacobs, A Jentsch, J Jia, K Jiang, S Jowzaee, E G Judd, S Kabana, D Kalinkin, K Kang, D Kapukchyan, K Kauder, H W Ke, D Keane, A Kechechyan, Z Khan, D P Kikoła, C Kim, I Kisel, A Kisiel, L Kochenda, M Kocmanek, T Kollegger, L K Kosarzewski, A F Kraishan, L Krauth, P Kravtsov, K Krueger, N Kulathunga, L Kumar, J Kvapil, J H Kwasizur, R Lacey, J M Landgraf, K D Landry, J Lauret, A Lebedev, R Lednicky, J H Lee, C Li, W Li, Y Li, X Li, J Lidrych, T Lin, M A Lisa, P Liu, F Liu, H Liu, Y Liu, T Ljubicic, W J Llope, M Lomnitz, R S Longacre, X Luo, S Luo, G L Ma, L Ma, Y G Ma, R Ma, N Magdy, R Majka, D Mallick, S Margetis, C Markert, H S Matis, K Meehan, J C Mei, Z W Miller, N G Minaev, S Mioduszewski, D Mishra, S Mizuno, B Mohanty, M M Mondal, D A Morozov, M K Mustafa, Md Nasim, T K Nayak, J M Nelson, M Nie, G Nigmatkulov, T Niida, L V Nogach, T Nonaka, S B Nurushev, G Odyniec, A Ogawa, K Oh, V A Okorokov, D Olvitt, B S Page, R Pak, Y Pandit, Y Panebratsev, B Pawlik, H Pei, C Perkins, P Pile, J Pluta, K Poniatowska, J Porter, M Posik, N K Pruthi, M Przybycien, J Putschke, H Qiu, A Quintero, S Ramachandran, R L Ray, R Reed, M J Rehbein, H G Ritter, J B Roberts, O V Rogachevskiy, J L Romero, J D Roth, L Ruan, J Rusnak, O Rusnakova, N R Sahoo, P K Sahu, S Salur, J Sandweiss, E Sangaline, M Saur, J Schambach, A M Schmah, W B Schmidke, N Schmitz, B R Schweid, J Seger, M Sergeeva, R Seto, P Seyboth, N Shah, E Shahaliev, P V Shanmuganathan, M Shao, M K Sharma, A Sharma, W Q Shen, Z Shi, S S Shi, Q Y Shou, E P Sichtermann, R Sikora, M Simko, S Singha, M J Skoby, D Smirnov, N Smirnov, W Solyst, L Song, P Sorensen, H M Spinka, B Srivastava, T D S Stanislaus, M Strikhanov, B Stringfellow, T Sugiura, M Sumbera, B Summa, X M Sun, Y Sun, X Sun, B Surrow, D N Svirida, A H Tang, Z Tang, A Taranenko, T Tarnowsky, A Tawfik, J Thäder, J H Thomas, A R Timmins, D Tlusty, T Todoroki, M Tokarev, S Trentalange, R E Tribble, P Tribedy, S K Tripathy, B A Trzeciak, O D Tsai, T Ullrich, D G Underwood, I Upsal, G Van Buren, G van Nieuwenhuizen, A N Vasiliev, F Videbæk, S Vokal, S A Voloshin, A Vossen, F Wang, Y Wang, G Wang, Y Wang, J C Webb, G Webb, L Wen, G D Westfall, H Wieman, S W Wissink, R Witt, Y Wu, Z G Xiao, G Xie, W Xie, Z Xu, N Xu, Y F Xu, Q H Xu, J Xu, Q Yang, C Yang, S Yang, Y Yang, Z Ye, Z Ye, L Yi, K Yip, I-K Yoo, N Yu, H Zbroszczyk, W Zha, X P Zhang, S Zhang, J B Zhang, J Zhang, Z Zhang, S Zhang, J Zhang, Y Zhang, J Zhao, C Zhong, L Zhou, C Zhou, Z Zhu, X Zhu, M Zyzak,

Affiliations

  1. AGH University of Science and Technology, FPACS, Cracow 30-059, Poland.
  2. Ohio State University, Columbus, Ohio 43210, USA.
  3. University of Kentucky, Lexington, Kentucky 40506-0055, USA.
  4. Joint Institute for Nuclear Research, Dubna, 141 980, Russia.
  5. Panjab University, Chandigarh 160014, India.
  6. Variable Energy Cyclotron Centre, Kolkata 700064, India.
  7. State University of New York, Stony Brook, New York 11794, USA.
  8. Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia.
  9. National Research Nuclear University MEPhI, Moscow 115409, Russia.
  10. Texas A&M University, College Station, Texas 77843, USA.
  11. University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
  12. Brookhaven National Laboratory, Upton, New York 11973, USA.
  13. Tsinghua University, Beijing 100084, China.
  14. Central China Normal University, Wuhan, Hubei 430079, China.
  15. National Institute of Science Education and Research, HBNI, Jatni 752050, India.
  16. University of California, Riverside, California 92521, USA.
  17. University of Houston, Houston, Texas 77204, USA.
  18. University of Jammu, Jammu 180001, India.
  19. University of Texas, Austin, Texas 78712, USA.
  20. Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic.
  21. Nuclear Physics Institute AS CR, Prague, 250 68, Czech Republic.
  22. Kent State University, Kent, Ohio 44242, USA.
  23. Rice University, Houston, Texas 77251, USA.
  24. Lehigh University, Bethlehem, Pennsylvania 18015, USA.
  25. Yale University, New Haven, Connecticut 06520, USA.
  26. University of California, Davis, California 95616, USA.
  27. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
  28. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.
  29. University of Science and Technology of China, Hefei, Anhui 230026, China.
  30. Creighton University, Omaha, Nebraska 68178, USA.
  31. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  32. University of California, Berkeley, California 94720, USA.
  33. Shandong University, Jinan, Shandong 250100, China.
  34. Institute of High Energy Physics, Protvino 142281, Russia.
  35. Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  36. Lamar University, Physics Department, Beaumont, Texas 77710, USA.
  37. University of California, Los Angeles, California 90095, USA.
  38. Wayne State University, Detroit, Michigan 48201, USA.
  39. University of Illinois at Chicago, Chicago, Illinois 60607, USA.
  40. Southern Connecticut State University, New Haven, Connecticut 06515, USA.
  41. Purdue University, West Lafayette, Indiana 47907, USA.
  42. Valparaiso University, Valparaiso, Indiana 46383, USA.
  43. Warsaw University of Technology, Warsaw 00-661, Poland.
  44. Temple University, Philadelphia, Pennsylvania 19122, USA.
  45. National Cheng Kung University, Tainan 70101, Taiwan.
  46. Indiana University, Bloomington, Indiana 47408, USA.
  47. Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany.
  48. Argonne National Laboratory, Argonne, Illinois 60439, USA.
  49. Institute of Physics, Bhubaneswar 751005, India.
  50. Pusan National University, Pusan 46241, Korea.
  51. Institute of Nuclear Physics PAN, Cracow 31-342, Poland.
  52. Max-Planck-Institut fur Physik, Munich 80805, Germany.
  53. Michigan State University, East Lansing, Michigan 48824, USA.
  54. World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo 11571, Egypt.
  55. United States Naval Academy, Annapolis, Maryland 21402, USA.

PMID: 30085817 DOI: 10.1103/PhysRevLett.121.032301

Abstract

We report measurements of the nuclear modification factor R_{CP} for charged hadrons as well as identified π^{+(-)}, K^{+(-)}, and p(p[over ¯]) for Au+Au collision energies of sqrt[s_{NN}]=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-p_{T} net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton R_{CP} at high p_{T} does depend on the collision energy, neither the proton nor the antiproton R_{CP} at high p_{T} exhibit net suppression at any energy. A study of how the binary collision-scaled high-p_{T} yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement.

Publication Types